1020. Запишите с обозначений и решением неравенства:
1) 3 < x < 12;
2) -19 < x < 0;
4) 9
< x < 3,5;
3) -27 < x < -3;
6) -5,6 < x < 4
5) 0,27 < x < 4;
изобразите на коор
натной прямой числовой промежуток, который являeta
напишите на листочке прям что бы понятно было
кто ответит правильно
нужно
1. Углы при основании равнобедренного треугольника РАВНЫ.
2. Сумма внутренних углов треугольника РАВНА 180 градусам.
3. Развернутый угол РАВЕН 180 градусам..
ДАНО
α = 3° - угол между веточками - прямыми.
АВ = 1 прыжок ("квак") = CONST - постоянная.
НАЙТИ
n = ? - число прыжков ("кваков ") для движения ВПЕРЁД.
РЕШЕНИЕ
Смотрим на рисунок к обратной задаче - найти угол для 8 "кваков" и на доске видим простую формулу - 2 "квака" -> 90/2 = 45°.
А теперь решаем нашу задачу с другого конца.
ΔABC - равнобедренный -> ∠BCA = α.
∠ABC = 180 - 2*α - сумма углов треугольника
∠ABD - развернутый =180° - отсюда
∠DBC = 180 - 2*α.
∠ACE - развернутый угол
И, самое главное,
∠DCE = 180 - α - ∠DBC = 3*α.
Смотрим дальнейшие расчеты и видим, что за каждый прыжок угол увеличивается НА α.
Движение "вперёд" угол не больше 90°.
И тогда формула движения "вперёд".
n*α <=90°.
Тогда число прыжков
n <=90 : α = 90 : 3 = 30 прыжков - ОТВЕТ.
Лягушонок промахнулся, но мы решили задачу.
1. Полная вероятность - всегда = 1. -сумма вероятностей всех возможных событий.
2. Вероятность события обозначают - р - "ДА", а "НЕТ" - q.
p=q - 1/
3. Все варианты для 3-х испытаний удобно вычислить по формуле (предлагаю формулу - куб суммы)
Р(А) = (p+q)³ = p³ + 3*p*q² + 3*p²*q + q³ = 1 - все возможные случаи.
4. Для монеты вероятности стороны равны: p=q= 0.5
5. Собственно расчет. Каждый член разложения имеет смысл:
a) p³ = 0.5³ = 0.125 - все три "орла"
б) q³ = 0.125 - все три "решки".
в) 3*p*q² = p*q*q + q*p*q + q*q*p = 0.375 - три варианта - один "орёл" и две "решки"
г) 3*p²*q = p*p*q + q*p*p + p*q*p = 0.375 - три варианта - два "орла" и одна "решка.
5. Проверяем на полную вероятность - 0,125+0,375+0,375+0,125=1 - правильно.
6. Переходим к поиску ответа.
а) Только на одной = Р(А) = p*q*q* = 0.125 - ОТВЕТ
б) На всех монетах = Р(А) =р³ = 0,125 - ОТВЕТ
в) Хотя бы на одной - вариант 5в - Р(А)= 0,375 - ОТВЕТ
г) Не менее чем на двух - это на двух ИЛИ на трех - вероятности суммируются - Р(А) = 0,125+ 0,325 = 0,450 - ОТВЕТ