3) Исследуем функции на четность
Так как , то функция является четной
4) Функция имеет две точки разрыва -1 и 1 , поэтому график функции имеет две вертикальные асимптоты х =-1 и х =1.
Найдем наклонные асимптоты , где
Так как k=0, то наклонных асимптот нет, а есть горизонтальные.
Найдем теперь коэффициент b.
Подставляем найденные коэффициенты в формулу y = kx + b, получаем, что y = 0 - горизонтальная асимптота.
5) Найдем экстремумы функции. Для это найдем производную y' и приравняем ее к нулю y' = 0
Тогда
Получилась одна критическая точка.
6) Найденные точки разрыва и точки экстремума, разбивают область определения на четыре интервала. Находим знак производной (у') на каждом интервале.
x x<-1 -1<x<0 0 0<x<1 x>1
y' - - 0 + +
y убыв. убыв. 1 воз. воз.
7) Найдем точки перегиба и промежутки выпуклости и вогнутости. Для этого найдем вторую производную
Решаем методом интервалов
Корней нет, значит точек перегиба нет и
Отмечаем на числовой прямой все найденные точки разрыва и критические точки , в нашем случае это точки –1; 0 ; 1.
Методом интервалов определяем знаки на полученных интервалах.
Интервал X < -1 ,
f''(x) = "–" < 0 - график функции является выпуклым на данном интервале;
Интервал – 1 < X < 1 ,
f''(x) = "+" > 0 - график функции является вогнутым на данном интервале;
Интервал X > 1 ,
8) Построим график функции. Данные для построения и сам график, представлены ниже
1) Область определения функции
2) Точки пересечения графика функции с осью OY
точка пересечение (0; 1)
3) Исследуем функции на четность
Так как , то функция является четной
4) Функция имеет две точки разрыва -1 и 1 , поэтому график функции имеет две вертикальные асимптоты х =-1 и х =1.
Найдем наклонные асимптоты , где
Так как k=0, то наклонных асимптот нет, а есть горизонтальные.
Найдем теперь коэффициент b.
Подставляем найденные коэффициенты в формулу y = kx + b, получаем, что y = 0 - горизонтальная асимптота.
5) Найдем экстремумы функции. Для это найдем производную y' и приравняем ее к нулю y' = 0
Тогда
Получилась одна критическая точка.
6) Найденные точки разрыва и точки экстремума, разбивают область определения на четыре интервала. Находим знак производной (у') на каждом интервале.
x x<-1 -1<x<0 0 0<x<1 x>1
y' - - 0 + +
y убыв. убыв. 1 воз. воз.
В точке экстремума (х=0) производная меняет знак с "-" на "+" значит это точка минимума.
7) Найдем точки перегиба и промежутки выпуклости и вогнутости. Для этого найдем вторую производную
Решаем методом интервалов
Корней нет, значит точек перегиба нет и
Отмечаем на числовой прямой все найденные точки разрыва и критические точки , в нашем случае это точки –1; 0 ; 1.
Методом интервалов определяем знаки на полученных интервалах.
Интервал X < -1 ,
f''(x) = "–" < 0 - график функции является выпуклым на данном интервале;
Интервал – 1 < X < 1 ,
f''(x) = "+" > 0 - график функции является вогнутым на данном интервале;
Интервал X > 1 ,
f''(x) = "–" < 0 - график функции является выпуклым на данном интервале;
8) Построим график функции. Данные для построения и сам график, представлены ниже