12. 17. Найдите три последовательных натуральных числа таких, что про- изведения третьего и первого. изведение второго и третьего из этих чисел на 50 больше квадрата первого. по отной из сторон прямото
ДАНО Y = 2x³+3x²-5 ИССЛЕДОВАНИЕ 1. Область определения - существования - все R или Х∈(-∞,+∞) и вывод - разрывов нет. 2. Пересечение с осью абсцисс - ось Х . X = -1. - без комментариев. 3. Пересечение с осью ординат - ось У У(0) = 5. 4. Поведение на бесконечности У(-∞) = - ∞ и У(+∞) = +∞. 5. Исследование на чётность У(-х) = -2х³+3х²-5 У(+х) = 2х³+3х² -5 У(х) ≠ У(-х) - функция ни чётная ни нечётная. 6. Поиск экстремумов по производной функции. У'(x) = 6*x²+6х = 6*х(x+1) Нули производной - х1 = 0, х2 = -1. 7. Монотонность Возрастает - Х∈(-∞,-1]∪[0,+∞) - вне корней производной. Убывает - Х∈[-1,0] - внутри корней производной. 8. Значение в точках экстремума Ymax(-1) = -4 Ymin(0) = -5 9. Построение графика. Вычисляем дополнительные точки. Y(-2) = -9 Y(1.5) = 8.5 И готово - в приложении.
2. y(-x)=(-x)⁴-50*(-x)²=x⁴-50x²
y(-x)=y(x), => функция четная
3. координаты точек пересечения графика с осями координат:
а. с осью Ох: у=0. x⁴-50x²=0, x² *(x²-50)=0
x=0 или x²-50=0. x₁=-5√2, x₂=5√2
A(0;0), B(-5√2;0), C(5√2;0)
б. с осью Оу: x=0. y(0)=0
4. y'=(x⁴-50x²)'=4x³-10x, y'=0. 4x³-100x=0
x*(4x²-100)=0
x=0 или 4x²-100=0, x²=25
x₁=0, x₂=-5, x₃=5
5. y' - + - +
----------------(-5)-----------(0)------------(5)-------------->x
y убыв min возр max убыв min возр
6. y(0)=0, y(-5)= -625, y(5)=-625
min: (-5;-625), (5;-625)
max (0;0)
график - "перевернутая" большая буква М
начертить,( только это плавная кривая. острых углов нет. )
Y = 2x³+3x²-5
ИССЛЕДОВАНИЕ
1. Область определения - существования - все R или
Х∈(-∞,+∞) и вывод - разрывов нет.
2. Пересечение с осью абсцисс - ось Х .
X = -1. - без комментариев.
3. Пересечение с осью ординат - ось У
У(0) = 5.
4. Поведение на бесконечности
У(-∞) = - ∞ и У(+∞) = +∞.
5. Исследование на чётность
У(-х) = -2х³+3х²-5
У(+х) = 2х³+3х² -5
У(х) ≠ У(-х) - функция ни чётная ни нечётная.
6. Поиск экстремумов по производной функции.
У'(x) = 6*x²+6х = 6*х(x+1)
Нули производной - х1 = 0, х2 = -1.
7. Монотонность
Возрастает - Х∈(-∞,-1]∪[0,+∞) - вне корней производной.
Убывает - Х∈[-1,0] - внутри корней производной.
8. Значение в точках экстремума
Ymax(-1) = -4
Ymin(0) = -5
9. Построение графика.
Вычисляем дополнительные точки.
Y(-2) = -9
Y(1.5) = 8.5
И готово - в приложении.