12(Сosx -Cos²x/2 - Sin²x/2)² = 10 - 13Cosx
12(Cosx -(Cos²x/2 +Sin²x/2))² = 10 - 13Cosx
12(Cosx -1)² = 10 -13Cosx
12(Cos²x -2Cosx +1) = 10 -13Cosx
12Cos²x -24Cosx +12 - 10 +13Cosx = 0
12Cos²x -11Cosx +2 = 0
cosx = t
12t² -11t +2 = 0
D = 121 - 96 = 25
t₁ = 16/24= 2/3 t₂ = 1/4
Сosx = 2/3 Cosx = 1/4
x = +- arcCos2/3 + 2πk , k ∈Z x = =-arcCos1/4 + 2πn , n ∈Z
12(Сosx -Cos²x/2 - Sin²x/2)² = 10 - 13Cosx
12(Cosx -(Cos²x/2 +Sin²x/2))² = 10 - 13Cosx
12(Cosx -1)² = 10 -13Cosx
12(Cos²x -2Cosx +1) = 10 -13Cosx
12Cos²x -24Cosx +12 - 10 +13Cosx = 0
12Cos²x -11Cosx +2 = 0
cosx = t
12t² -11t +2 = 0
D = 121 - 96 = 25
t₁ = 16/24= 2/3 t₂ = 1/4
Сosx = 2/3 Cosx = 1/4
x = +- arcCos2/3 + 2πk , k ∈Z x = =-arcCos1/4 + 2πn , n ∈Z