12. Два велосипедиста двигаются по треку в форме круга длиной 120 метров. Скорость первого велосипедиста 28 м/с. Если оба велосипедиста одновременно начнут движение в противоположных направлениях, то будут встречатся каждые 2 секунды. Если велосипедисты начнут движение в одном направлении, то через сколько секунд они встретятся?
1. Пусть было х трехместных и у пятиместных лодок.
x+y = 7
В трехместные лодки поместилось 3x чел, а в пятиместные 5y чел. Всего в лодках был 31 турист.
3x+5y = 31
Составим и решим систему уравнений:
.
ответ: было 2 пятиместных и 5 трёхместных лодок.
2. Собственная скорость катера x км/ч, скорость течения реки y км/ч.
x+y км/ч скорость катера по течению
x-y км/ч скорость катера против течения
По течению 84 км проплыл за 3 часа:
(x+y)·3 = 84
Против течения 84 км проплыл за 3,5 часа:
(x-y)·3.5 = 84
Составим и решим систему уравнений:
ответ: собственная скорость катера 26 км/ч, скорость течения реки 2км/ч.
Задача 1.
Бросают игральный кубик.
Событие А - выпало 2 очка (один исход из шести)
Событие В - выпало нечётное количество очков (1,3,5 - 3 исхода из шести)
Вероятность Р=Р(А)*Р(В)
Р(А)=1/6
Р(В)= 3/6=1/2
Р= 1/6 * 1/2 = 1/12
Задача 2.
Первая партия лампочек 4% брак (0,04) и 100%-4%=96% исправные (0,96)
Вторая партия лампочек 5% брак (0,05) и 100%-5%=95% исправные (0,95)
а) Событие А - обе лампочки исправные
Р(А)= 0,96*0,95=0,912 (или 91,2%)
б) Событие В - хотя бы одна из лампочек окажется исправной
Событие С - обе лампочки бракованные
Р(С)=0,04*0,05=0,002
Р(В)=1-Р(С)=1-0,002=0,998 (или 99,8%)
Задача 3.
Чёрных шаров - 5 шт.
Красных шаров - 4 шт.
Белых шаров - 3 шт.
Всего шаров - 5+4+3=12 шт.
Вероятность вынуть первым чёрный шар равна 5/12
После этого, в урне останется 12-1=11 шт. шаров
Теперь вероятность вынуть красный шар равна 4/11
После этого, в урне останется 11-1=10 шт. шаров
После этого, вероятность вынуть белый шар равна 3/10
Итак, итоговая вероятность Р=5/12 * 4/11 * 3/10 = 1/22