Впервые с модулем числа мы познакомились в шестом классе, где даётся такое определение: модулем числа называется расстояние (в единичных отрезках) от начала координат до точки . Это определение раскрывает геометрический смысл модуля.
Модуль действительного числа – это абсолютная величина этого числа.
Попросту говоря, при взятии модуля нужно отбросить от числа его знак.
Модуль числа a обозначается |a|. Обратите внимание: модуль числа всегда неотрицателен: |a|≥ 0.
Надо построить треугольник, площадь которого равна площади трапеции. Пусть трапеция ABCD, AD II BC. Из С проводим прямую II диагонали BD до пересечения с продолжением AD. Пусть это точка Е. Ясно, что DBCE - параллелограмм. Треугольник ACE имеет ту же высоту, что и трапеция - это расстояние от С до AD (обозначим эту высоту СН), а АЕ = AD + BC. Очевидно, что площадь АСЕ равна площади ABCD ( = СН*(AD + BC)/2). Стороны треугольника АСЕ это AC = 15; СЕ = BD = 20; AE = AD + BC = 2*12,5 = 25. Не трудно убедится, что это треугольник, подобный "египетскому" - со сторонами (3,4,5). То есть это прямоугольный треугольник, и его площадь равна 15*20 / 2 = 150. ответ - площадь трапеции 150.
Впервые с модулем числа мы познакомились в шестом классе, где даётся такое определение: модулем числа называется расстояние (в единичных отрезках) от начала координат до точки . Это определение раскрывает геометрический смысл модуля.
Модуль действительного числа – это абсолютная величина этого числа.
Попросту говоря, при взятии модуля нужно отбросить от числа его знак.
Модуль числа a обозначается |a|. Обратите внимание: модуль числа всегда неотрицателен: |a|≥ 0.
|6| = 6, |-3| = 3, |-10,45| = 10,45
Пошаговое объяснение:
Пусть трапеция ABCD, AD II BC. Из С проводим прямую II диагонали BD до пересечения с продолжением AD. Пусть это точка Е. Ясно, что DBCE - параллелограмм.
Треугольник ACE имеет ту же высоту, что и трапеция - это расстояние от С до AD (обозначим эту высоту СН), а АЕ = AD + BC. Очевидно, что площадь АСЕ равна площади ABCD ( = СН*(AD + BC)/2).
Стороны треугольника АСЕ это AC = 15; СЕ = BD = 20; AE = AD + BC = 2*12,5 = 25.
Не трудно убедится, что это треугольник, подобный "египетскому" - со сторонами (3,4,5). То есть это прямоугольный треугольник, и его площадь равна 15*20 / 2 = 150.
ответ - площадь трапеции 150.