12. Самар упражнялся в арифметике. Но, когда он ненадолго вышел, Рустам стёр все знаки арифметических действий и скобки. Вот что полу- чилось в итоге: 12 = 345 12 = 3456 12 = 34567; 12 = 345678; 12 = 3456789. Восстановите исходную запись
Если я правильно понял условие задачи то: При вращении данного прямоугольника вокруг большей стороны образуется цилиндр. Площадь цилиндра равна: S=2 π rh. Теперь найдем r и h. В данном случае r - меньшая сторона прямоугольника, а h - большая сторона. Т.к. диагональ равна 10 см и образует с большей стороной угол в 30 градусов, то нужно рассмотреть прямоугольный треугольник, в котором стороны прилегающие к углу в 90 градусов равны r и h, а гипотенузой является диагональ прямоугольника. Тогда r=1/2*(гипотенузу)= 5см - т.к. катит лежащий против угла в 30 градусов равен половине гипотенузы; h=10^2-5^2=5 корней из 3 - по теореме Пифагора. Остается только подставить значения в формулу для нахождения площади: S=2*3.14*5*5 корнейИз 3= 157 корнейИз 3
Всего 7 велосипедов и 20 колес. Числа до 20 кратные 3 (трехколесные велосипеды): 3,9,12,15,18. Числа до 20 кратные 2 (двухколесные велосипеды): 2, 4, 6, 8, 10, 12, 14, 16, 18. Найдем какие числа (трехколесные + двухколесные велосипеды) дадут в сумме 20 колес (отбросим сразу 3, 9, 15, поскольку 20-3=17 (не кратное 2), 20-9=11 (не кратное 2); 20-15=5 (не кратное 2)).
20=12(по 3 колеса) + 8(по 2колеса) = 12:3+8:2=4+4=8 велосипедов - не подходит. 20=18(по 3 колеса)+2(по два колеса) = 18÷3+2÷2=6+1= 7 велосипедов. Значит, двухколесных был один велосипед и трехколесных шесть велосипедов. ответ: один ребёнок приехал на двухколесном велосипеде.
И трехколесные и двухколесные велосипеды имеют по 2 колеса. 2×7=14 колес по 2 шт. у всех велосипедов. Для трехколесных дополнительно остается: 20-14=6 колес 6 колес нужно распределить по одному среди трехколесных велосипедов, поскольку два колеса мы уже учли: 6÷1=6 - трехколесных велосипедов, имеющих 6×3=18 колес 20-18=2 колеса - у одного двухколесного велосипеда. ответ: один ребёнок приехал на двухколесном велосипеде.
При вращении данного прямоугольника вокруг большей стороны образуется цилиндр. Площадь цилиндра равна: S=2 π rh.
Теперь найдем r и h. В данном случае r - меньшая сторона прямоугольника, а h - большая сторона.
Т.к. диагональ равна 10 см и образует с большей стороной угол в 30 градусов, то нужно рассмотреть прямоугольный треугольник, в котором стороны прилегающие к углу в 90 градусов равны r и h, а гипотенузой является диагональ прямоугольника.
Тогда r=1/2*(гипотенузу)= 5см - т.к. катит лежащий против угла в 30 градусов равен половине гипотенузы; h=10^2-5^2=5 корней из 3 - по теореме Пифагора.
Остается только подставить значения в формулу для нахождения площади:
S=2*3.14*5*5 корнейИз 3= 157 корнейИз 3
Всего 7 велосипедов и 20 колес.
Числа до 20 кратные 3 (трехколесные велосипеды): 3,9,12,15,18.
Числа до 20 кратные 2 (двухколесные велосипеды): 2, 4, 6, 8, 10, 12, 14, 16, 18.
Найдем какие числа (трехколесные + двухколесные велосипеды) дадут в сумме 20 колес (отбросим сразу 3, 9, 15, поскольку 20-3=17 (не кратное 2), 20-9=11 (не кратное 2); 20-15=5 (не кратное 2)).
20=12(по 3 колеса) + 8(по 2колеса) = 12:3+8:2=4+4=8 велосипедов - не подходит.
20=18(по 3 колеса)+2(по два колеса) = 18÷3+2÷2=6+1= 7 велосипедов.
Значит, двухколесных был один велосипед и трехколесных шесть велосипедов.
ответ: один ребёнок приехал на двухколесном велосипеде.
И трехколесные и двухколесные велосипеды имеют по 2 колеса.
2×7=14 колес по 2 шт. у всех велосипедов.
Для трехколесных дополнительно остается:
20-14=6 колес
6 колес нужно распределить по одному среди трехколесных велосипедов, поскольку два колеса мы уже учли:
6÷1=6 - трехколесных велосипедов, имеющих 6×3=18 колес
20-18=2 колеса - у одного двухколесного велосипеда.
ответ: один ребёнок приехал на двухколесном велосипеде.