Пусть производительность первого рабочего x (1/ч) , второго -- y (1/ч) . Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение: (1) 1/y - 1/x = 3. За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение: (2) 4x + 3y = 1 => y = (1 - 4x)/3 Подставляя в (1), получим 3/(1-4x) - 1/x = 3. Умножаем на x(1-4x): 3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2; 12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6. Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
По первому условию:
a₁ + a₁ + 4d = 4,
2a₁ + 4d = 4.
a₁ + 2d = 2. Отсюда a₁ = 2 - 2d.
По второму условию:
a₁ * (a₁ + 4d) = -32.
Заменим a₁ на 2 - 2d:
(2 - 2d)(2 - 2d + 4d) = -32,
(2 - 2d)(2 + 2d) = -32,
4 - 4d² = -32 сократим на 4,
1 - d² = -8,
d² = 1 + 8 = 9,
d = √9 = +-3. Примем первое значение d = 3.
a₁ = 2 - 2*3 = 2 - 6 = -4,
a₅ = a₁ + 4d = -4 + 4*3 = -4 + 12 = 8.
Проверяем условие: а₁ + а₅ = -4 + 8 = 4,
а₁*а₅ = (-4)*8 = -32.
Примем второе значение d = -3.
a₁ = 2 - 2*(-3) = 2 + 6 = 8,
a₅ = a₁ + 4d = 8 + 4*(-3) = 8 - 12 = -4.
Проверяем условие: а₁ + а₅ = 8 - 4 = 4,
а₁*а₅ = 8*(-4) = -32.
Оба варианта верны, значит задача имеет два варианта ответа.
Третий член прогрессии равен:
по первому варианту:
a₃ = a₁ + d(3 - 1) = a₁ + 2d
а₃ = -4 + 2*3 = -4 + 6 = 2.
По второму варианту:
а₃ = 8 +2*(-3) = 8 - 6 = 2.
В обоих вариантах значения третьего члена прогрессии совпадают.
Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение:
(1) 1/y - 1/x = 3.
За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение:
(2) 4x + 3y = 1 => y = (1 - 4x)/3
Подставляя в (1), получим
3/(1-4x) - 1/x = 3. Умножаем на x(1-4x):
3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2;
12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому
x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6.
Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.