1201. Виконай множення зручним : 1) -0,2 · 34 · (-5); 2) -2 · (-0,5) · 113; 3) 0,25 (-17) (-40); 4) -0,125 (-4,2) · (-80); 5) -20 - (-14,2).(-5); 6) -500 · 14 · 0,02 · (-2). 1202. Обчисли, використовуючи властивості множення: 5 7 2 1 1) (-2,5) -1 · 0,8; 2) 1-.(-46); 9 5 8 23 4 6 7 4 9 3) -6,5 (-2)-2 6 -2 4) (-39).( 13 18 13) 14 4 7 5) 8 4 2- 9 5 6) 12 22 15
II. Прометей — улюблений міфічний герой Стародавньої Греції:
1. Характерні риси героя (благородне серце, справедливий, хоробрий, відданий людям; має хист передбачення).
2. Значення Прометея для розвитку людської цивілізації (навчив обробляти дерево й будувати житло, лічити, писати, визначати зірки, показав цілющі трави, скарби землі, запряг биків, привчив коней ходити запряженими, винайшов кораблі).
3 Розкриття етичної проблеми в образі Прометея (власна відповідальність за прийняте рішення; людина, яка не зраджує своєї долі; віра у можливості людини.)
4 Головна ідея твору (віра в прогрес та розвиток людства).
a) D= - Диагональ параллелепипеда.
б) Наименьшая грань образована меньшими ребрами: - Её диагональ.
в) Наибольшая грань образована большими ребрами: 3*6=18 - Её площадь.
г) Наименьшая грань образована меньшими ребрами: 2*3=6 - Её площадь.
д) Площадь поверхности - сумма площадей граней: (2*3+2*6+3*6) * 2 = (6+12+18)*2=36*2=72.
2. d-диагональ призмы, a - угол между d и основанием.
а) Высота призмы равна проекции её диагонали на боковое ребро: h=d*sin(a)
б) Диагональ основания призмы равна проекции её диагонали на основание: f=d*cos(a)
в) Поскольку основанием призмы является правильный шестиугольник, все углы равны 120 градусам. Если провести диагональ f, она разделит углы пополам, то есть по 60 градусов. Если провести 3 таких диагонали, получим 6 равносторонних треугольников со стороной равной длине ребра и f будет равна удвоенной стороне основания, т.е. g=f/2
г) Поскольку основанием призмы является правильный шестиугольник, его площадь будет равна , где g - сторона основания.
д) Наибольшее диагональное сечение призмы будет опираться на большую диагональ основания f. Поскольку призма является правильной, сечение будет иметь форму прямоугольника. Её площадь вычисляется по формуле: f*h=dsin(a)*dcos(a)=d^2*sin(2a)/2
е) Площадь боковой поверхности правильной призмы равна периметру основания на высоту: 6*g*h = 6f/2*dsin(a)=dsin(a)*dcos(a)/2=3d^2*sin(2a)/2.
3.
а) Большая диагональ параллелепипеда образует с диагональю основания и высотой прямоугольный треугольник. Диагональ параллелепипеда является в этом треугольнике гипотенузой. - Большая диагональ основания
б) Аналогично, меньшая диагональ основания будет равна .
в) Поскольку в основании лежит ромб, его диагонали пересекаются под прямым углом и в точке пересечения делятся пополам. Сторона основания параллелепипеда в этом треугольнике является гипотенузой. - длина стороны основания.
г) Поскольку основание является ромбом, площадь его основания равна половине произведения диагоналей: 6*15/2=45
д) Площадь боковой поверхности равна произведению периметра основания на высоту: 17*4*8=544.
е) Большая диагональ параллелепипеда образует прямоугольник со сторонами 8,15,17. Нужно найти угол между диагональю параллелепипеда и основанием, то есть сторонами треугольника равными 15 и 17. В прямоугольном треугольнике косинус угла равен отношению прилежащего катета к гипотенузе.
cos(a)=15/17.
a=28 градусов.
4.
а) Поскольку в основании призмы лежит прямоугольный треугольник, и нам известны два его катета, гипотенуза будет равна
б) Поскольку в основании призмы лежит прямоугольный треугольник, площадь призмы будет равна площади прямоугольного треугольника, то есть половине произведения катетов: 12*5/2=30.
в) Площадь боковой поверхности призмы равна произведению периметра основания на высоту: (5+12+13)*10=300.
г) Площадь полной поверхности призмы равна сумме площади боковой поверхности и двух площадей основания: 300+2*30=360.
д) Сечение, проведенное через боковое ребро и середину гипотенузы, будет опираться на медиану основания, проведенную к гипотенузе.
Рассмотрим треугольник, сторонами которого является меньший катет основания, медиана и половина гипотенузы. 2 стороны равны 5 и 6.5.
Для нахождения 3 стороны воспользуемся формулой
Косинус угла a равен 5\13
Подставим:
=6.5.
Площадь сечения будет равна 6.5*10=65.
е) Наибольшая боковая грань призмы опирается на гипотенузу прямоугольного треугольника, лежащего основания. Её диагональ равна