Из одной вершины вторым концом диагонали не будут являться сама вершина и 2 ее соседние вершины, т.е. всего 3 точки. Значит, возможных концов диагоналей из одной вершины на 3 меньше общего числа вершин.
Умножаем на число вершин, т.к. началом диагонали может служить любая вершина.
При таком подсчете каждая диагональ учитывается 2 раза, т.к. диагональ соединяет 2 вершины многоугольника и подсчет выполняется для каждой вершины. Поэтому полученный результат нужно разделить на 2.
В круг вписан правильный шестиугольник со стороной 8 см. от вершины шестиугольника до центра проведи отрезки (р) и получишь 6 одинаковых равнобедренных треугольников. основание равнобедренных треугольников равно 8 см сумма вершин 6 треуг. = 360 градусов Отсюда 1 вершина равна 360/6 =60 градусов. У равобедренного треугольника углы у основания равны а сумма всех углов =180 отсюда 180-60/2 = 60. значит треугольники равносторонние. отрезок (р) он же радиус = 8 см так как у равностороннего треугольника все стороны равны. сторона квадрата описаного вокруг окружности равна 2*радиус (р) 8*2 =16
Умножаем на число вершин, т.к. началом диагонали может служить любая вершина.
При таком подсчете каждая диагональ учитывается 2 раза, т.к. диагональ соединяет 2 вершины многоугольника и подсчет выполняется для каждой вершины. Поэтому полученный результат нужно разделить на 2.
Семиугольник: 7*(7-3)/2 = 7*4/2 = 14
Десятиугольник: 10*(10-3)/2 = 5*7 = 35
Стоугольник: 100*(100-3)/2 = 50*97 = 4850
основание равнобедренных треугольников равно 8 см сумма вершин 6 треуг. = 360 градусов Отсюда 1 вершина равна 360/6 =60 градусов. У равобедренного треугольника углы у основания равны а сумма всех углов =180 отсюда 180-60/2 = 60. значит треугольники равносторонние. отрезок (р) он же радиус = 8 см так как у равностороннего треугольника все стороны равны.
сторона квадрата описаного вокруг окружности равна 2*радиус (р)
8*2 =16