14. После того как хозяин магазина из примера 13 ввёл премии для работы ников, зависящие от выручки результаты последующих месяцев приобре- ли следующий вид: 1 2. 3 Месяцы 4 5 6 7 8 9 10 11 12 Выручка 13 14 16 11 13 15 15 14 16 12 17 20 Расходы 11 12,6 13,8 9,1 11,7 13,6 12,5 13,6 14,8 11,7 16,5 19 Определите среднее арифметическое, медиану и моду для а) выручки; b) расходов; с) прибыли 2018 года.
А) Если прямоугольник является квадратом, то его диагонали взаимно перпендикулярны и делят углы пополам. Это верное утверждение. Его называют теоремой Обратное Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема Противоположное Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема. Обратное противоположному Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема Обратное Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема. Противоположное Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема. Противоположное обратному Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
Все четырехзначные числа имеют такое строение: aabb, bbaa, abab, baba, abba, baab, где a и b - однозначные числа (цифры).
Следовательно, всего комбинаций таких чисел выходит 9 * 9 * 6 = 486 (для цифры a - 9 возможностей, для цифры b - столько же, и еще 6 комбинаций различных расстановок). но еще нужно разделить полученное число на 2, потому что пример для а = 1 и b = 2 - это тоже самое, что и наоборот. Сейчас мы имеем уже 243 числа.
Но также хорошими четырехзначными числами являются числа вида 1111, 2222, 3333, ... , 9999. Таких чисел всего 9 и повторяются они целых 6 раз (по числу комбинаций из чисел a и b). Всего таких чисел было посчитано 9 * 6 = 54, но 9 из них нужно оставить, а еще 27 (половину) мы вычли, когда делили на 2. Поэтому надо вычесть 54 - 27 - 9 = 18. Что мы и сделаем: 243 - 18 = 225.
Это и есть ответ. Задача решена!
Примечание.
Можно посчитать общее количество хороших чисел, прибавив еще хорошие числа с нулем. Понятно, что это числа вида aabb, abba, abab, где а ≠ 0. Тогда b = 0. Поэтому таких комбинаций будет 9 * 3 (для числа a есть 9 разных значений [b неизменно равно нулю], а всего комбинаций такого вида есть 3). Теперь можно найти полный ответ: 225 + 27 = 252 хороших четырхзначных чисел всего.
Обратное
Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема
Противоположное
Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема.
Обратное противоположному
Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема
Обратное
Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема.
Противоположное
Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема.
Противоположное обратному
Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
ответ: 225 чисел.
Все четырехзначные числа имеют такое строение: aabb, bbaa, abab, baba, abba, baab, где a и b - однозначные числа (цифры).
Следовательно, всего комбинаций таких чисел выходит 9 * 9 * 6 = 486 (для цифры a - 9 возможностей, для цифры b - столько же, и еще 6 комбинаций различных расстановок). но еще нужно разделить полученное число на 2, потому что пример для а = 1 и b = 2 - это тоже самое, что и наоборот. Сейчас мы имеем уже 243 числа.
Но также хорошими четырехзначными числами являются числа вида 1111, 2222, 3333, ... , 9999. Таких чисел всего 9 и повторяются они целых 6 раз (по числу комбинаций из чисел a и b). Всего таких чисел было посчитано 9 * 6 = 54, но 9 из них нужно оставить, а еще 27 (половину) мы вычли, когда делили на 2. Поэтому надо вычесть 54 - 27 - 9 = 18. Что мы и сделаем: 243 - 18 = 225.
Это и есть ответ. Задача решена!
Примечание.
Можно посчитать общее количество хороших чисел, прибавив еще хорошие числа с нулем. Понятно, что это числа вида aabb, abba, abab, где а ≠ 0. Тогда b = 0. Поэтому таких комбинаций будет 9 * 3 (для числа a есть 9 разных значений [b неизменно равно нулю], а всего комбинаций такого вида есть 3). Теперь можно найти полный ответ: 225 + 27 = 252 хороших четырхзначных чисел всего.