Пошаговое объяснение:
Чтобы решить систему уравнений, надо одну из переменных выразить через другую и подставить полученное выражение во второе уравнение:
2 – 3 * х = 2 * (1 - у);
2 – 3 * х = 2 – 2 * у;
-3 * х = - 2 * у;
у = - 3 * х / -2 = 3 * х / 2.
Подставим во второе уравнение полученное выражение:
4 * (х + у) = х – 1,5;
4 * (х + (3 * х / 2)) – х + 1,5 = 0;
4 * х + 6 * х – х + 1,5 = 0;
9 * х + 1,5 = 0;
9 * х = - 1,5;
х = - 1,5 / 9 = - 15 / 90 = - 1/6.
у = 3 * х / 2 = 3 * (- 1/6) / 2 = - (1/2) / 2 = - 1/4 = - 0,25.
ответ: решением системы уравнений является пара чисел: х = -1/6; у = -0,25.
Лекция 3
Графы
Чтобы решить какую-то задачу, часто бывает полезно нарисовать картинку, иллюстрирующую её условие. В этой главе мы рассмотрим один вид таких картинок:
«графы». Граф — это набор точек («вершин»), соединённых линиями («рёбрами»).
При этом важно, какие точки соединены, а как именно это ребро нарисовано, не
имеет значения.
Прежде чем давать точные определения соответствующих понятий, мы разберём
несколько задач, в которых подобные картинки .
3.1 Примеры
3.1.1 Граф авиарейсов
Задача. Представим себе страну, в которой есть пять городов A, B, C, D, E, между
которыми летают самолёты. Есть шесть рейсов: A–B, A–C, A–E, B–D, C–D, C–E
(каждый рейс в обе стороны). Можно ли долететь из города A в город D прямым
рейсом? с одной пересадкой? с двумя пересадками? Сколькими ?
A
B
C
D
E
Это совсем простая задача: чтобы её решить, достаточно нарисовать картинку.
Сразу видно, что прямого рейса нет, с одной пересадкой есть два A–B–D и
A–C–D, а с двумя пересадками есть единственный вариант A–E–C–D.
Ту же картинку можно использовать, чтобы ответить на более сложный вопрос
Пошаговое объяснение:
Чтобы решить систему уравнений, надо одну из переменных выразить через другую и подставить полученное выражение во второе уравнение:
2 – 3 * х = 2 * (1 - у);
2 – 3 * х = 2 – 2 * у;
-3 * х = - 2 * у;
у = - 3 * х / -2 = 3 * х / 2.
Подставим во второе уравнение полученное выражение:
4 * (х + у) = х – 1,5;
4 * (х + (3 * х / 2)) – х + 1,5 = 0;
4 * х + 6 * х – х + 1,5 = 0;
9 * х + 1,5 = 0;
9 * х = - 1,5;
х = - 1,5 / 9 = - 15 / 90 = - 1/6.
у = 3 * х / 2 = 3 * (- 1/6) / 2 = - (1/2) / 2 = - 1/4 = - 0,25.
ответ: решением системы уравнений является пара чисел: х = -1/6; у = -0,25.
Пошаговое объяснение:
Лекция 3
Графы
Чтобы решить какую-то задачу, часто бывает полезно нарисовать картинку, иллюстрирующую её условие. В этой главе мы рассмотрим один вид таких картинок:
«графы». Граф — это набор точек («вершин»), соединённых линиями («рёбрами»).
При этом важно, какие точки соединены, а как именно это ребро нарисовано, не
имеет значения.
Прежде чем давать точные определения соответствующих понятий, мы разберём
несколько задач, в которых подобные картинки .
3.1 Примеры
3.1.1 Граф авиарейсов
Задача. Представим себе страну, в которой есть пять городов A, B, C, D, E, между
которыми летают самолёты. Есть шесть рейсов: A–B, A–C, A–E, B–D, C–D, C–E
(каждый рейс в обе стороны). Можно ли долететь из города A в город D прямым
рейсом? с одной пересадкой? с двумя пересадками? Сколькими ?
A
B
C
D
E
Это совсем простая задача: чтобы её решить, достаточно нарисовать картинку.
Сразу видно, что прямого рейса нет, с одной пересадкой есть два A–B–D и
A–C–D, а с двумя пересадками есть единственный вариант A–E–C–D.
Ту же картинку можно использовать, чтобы ответить на более сложный вопрос