1400. Запишите уравнение прямой, если известны коэффициенты a, bg свободный член с. Постройте ее график: 1) а = 1; b= 2; c= 4; 3) а = 3; b = 0; c = -9; 2) а = 0; b = -1; c = 6; 4) а = 4; b = 1; c = -2.
Опишу подробно для ясности рассуждений. 1. Вынимаем один шар из первой урны Вероятность Б - р1 = 7/12 Вероятность Ч - q1 = 1 - p1 = 5/12 И возникли два события. 2. Если взяли Белый, то во второй урне их стало 4 из 7 и взять уже из второй урны будет - р2 = 4/7 3 А если взяли черный, то во второй урне белых станет - 3 из 7 вероятность взять белый будет р3 = 3/7. И, самое главное что эти события НЕ ЗАВИСИМЫЕ и вероятности складываются. Всего = 7/12 * 4/7 + 5/12*3/7 = 1/3 + 5/28 = 43/84 ~ 0.512 ~ 51.2% - ОТВЕТ
1) На координатном луче отмечаем точки (-7) и (17). Затем отмечаем все точки, лежащие между данными и соответствующие целым числам (смотри рис. 1). Считаем их количество. Получается 23.
Второй И еще из результата (24) вычитаем 1, т.к. одну крайнюю точку - (17) - учитывать не нужно..
24-1 = 23
ответ: 23
2) Чертим координатную прямую и отмечаем на ней точки (-17) и (-9). Затем отмечаем все точки между данными, соответствующие целым числам (см. рис. 2). Считаем их количество. Получается 9 чисел.
Либо можно сосчитать так: -9-(-17) = -9+17 = 8 – это количество чисел от (-17) до (-9), не считая (-17).
Убираем еще одно число, т.к. (-9) тоже не нужно учитывать.
8-1 = 7
ответ: 7
3) Кузнечик стартует в точке (-3), а в точке 23 останавливается.
Все целые числа он должен проходит по порядку. Ему необходимо прыгать только вправо. Тогда количество прыжков будет наименьшим. Если он сделает хоть один прыжок назад, это увеличит общее количество прыжков (см. рис. 3).
В этом случае от (-3) до 23 кузнечик сделает 23-(-3)=23+3=26 прыжков.
ответ: 26
4) Чертим числовую прямую. Отмечаем на ней точки, соответствующие целым числам. От точки (5) отсчитываем 19 целых чисел влево, т.к. нужно вычесть 19.
1. Вынимаем один шар из первой урны
Вероятность Б - р1 = 7/12
Вероятность Ч - q1 = 1 - p1 = 5/12
И возникли два события.
2. Если взяли Белый, то во второй урне их стало 4 из 7 и взять уже из второй урны будет - р2 = 4/7
3 А если взяли черный, то во второй урне белых станет - 3 из 7 вероятность взять белый будет р3 = 3/7.
И, самое главное что эти события НЕ ЗАВИСИМЫЕ и вероятности складываются.
Всего = 7/12 * 4/7 + 5/12*3/7 = 1/3 + 5/28 = 43/84 ~ 0.512 ~ 51.2% - ОТВЕТ
1) На координатном луче отмечаем точки (-7) и (17). Затем отмечаем все точки, лежащие между данными и соответствующие целым числам (смотри рис. 1). Считаем их количество. Получается 23.
Второй И еще из результата (24) вычитаем 1, т.к. одну крайнюю точку - (17) - учитывать не нужно..
24-1 = 23
ответ: 23
2) Чертим координатную прямую и отмечаем на ней точки (-17) и (-9). Затем отмечаем все точки между данными, соответствующие целым числам (см. рис. 2). Считаем их количество. Получается 9 чисел.
Либо можно сосчитать так: -9-(-17) = -9+17 = 8 – это количество чисел от (-17) до (-9), не считая (-17).
Убираем еще одно число, т.к. (-9) тоже не нужно учитывать.
8-1 = 7
ответ: 7
3) Кузнечик стартует в точке (-3), а в точке 23 останавливается.
Все целые числа он должен проходит по порядку. Ему необходимо прыгать только вправо. Тогда количество прыжков будет наименьшим. Если он сделает хоть один прыжок назад, это увеличит общее количество прыжков (см. рис. 3).
В этом случае от (-3) до 23 кузнечик сделает 23-(-3)=23+3=26 прыжков.
ответ: 26
4) Чертим числовую прямую. Отмечаем на ней точки, соответствующие целым числам. От точки (5) отсчитываем 19 целых чисел влево, т.к. нужно вычесть 19.
Оказываемся в точке (-14) (см. рис. 4)
ответ: -14