145. 1) (127 + 89) · 305 - 42 993; 2) 59 057 : 73 + 239 · 49;
3) 139 725 : 405 - 151 892 : 508;
4) 7410 + 51 642 : (517 + 389);
5) 81 · (2423 - 1879): 36;
6) (10 034 - 17 514 : 21) · 25.
46. 1) 7: 65 + 7.35 +3.35 + 3 • 55;
2) 8.3 + 3.93 + 8.97 + 3 . 7;
3) 37 · 49 + 37 · 51 + 63 · 49 + 51 · 63;
4) 819 · 73 + 181 · 27 + 73 · 181 + 27 819.
A
Пошаговое объяснение:
Скорость первого лыжника 12 км/ч.
Скорость первого лыжника 14 км/ч.
Время движения 3 ч.
Направление движения: навстречу друг другу.
Найди расстояние между поселками.
Перед решением, давай очень внимательно разберемся с условием задачи.
Нам известно, что два лыжника одновременно и навстречу друг другу из двух поселков, значит, двигались одной дорогой, так как через 3 часа они встретились. Каждый шел со своей скоростью: первый лыжник шел со скоростью 12 км/ч, а второй со скоростью 14 км/ч.
Вариант решения 1.
Зная какое расстояние каждый из лыжников за 3 ч, сумма этих расстояний и есть расстояние между поселками.
Определим расстояние, которое каждый лыжник по формуле:
S = v * t, где s — пройденный путь (км), v — скорость движения (км/ч), t — время (ч), за которое пройден путь S.
Расстояние, которое первый лыжник:
S1 = 12 * 3 = 36 км.
Расстояние, которое первый лыжник:
S2 = 14 * 3 = 42 км.
После 3 ч одновременной ходьбы, они встретились. А так как дорого была одна и движение навстречу друг другу, то сумма расстояний, которое первый лыжник и расстояние, которое второй лыжник и есть расстояние между поселками.
S3 = S1 - S2, км
S3 = 36 + 42 = 78 км.
ответ 1: расстояние между поселками равно 78 км.
Вариант решения 2.
Расстояние, на которое сближаются лыжники за единицу времени, называют скоростью сближения vсб.
В случае движения двух лыжников навстречу друг другу, скоростью сближения равно:
vсб = v1 + v2
Если начальная расстояние между лыжниками равна S километров и лыжники встретились через tвст часов, то очевидно, что S = vсб * tвст = (v1 + v2) * tвст
vсб = 12 + 14 = 26 км/ч
S = (12 + 14) * 3 = 78 км.
ответ 2: расстояние между поселками равно 78 км.
Пошаговое объяснение:
Скорость первого лыжника 12 км/ч.
Скорость первого лыжника 14 км/ч.
Время движения 3 ч.
Направление движения: навстречу друг другу.
Найди расстояние между поселками.
Перед решением, давай очень внимательно разберемся с условием задачи.
Нам известно, что два лыжника одновременно и навстречу друг другу из двух поселков, значит, двигались одной дорогой, так как через 3 часа они встретились. Каждый шел со своей скоростью: первый лыжник шел со скоростью 12 км/ч, а второй со скоростью 14 км/ч.
Вариант решения 1.
Зная какое расстояние каждый из лыжников за 3 ч, сумма этих расстояний и есть расстояние между поселками.
Определим расстояние, которое каждый лыжник по формуле:
S = v * t, где s — пройденный путь (км), v — скорость движения (км/ч), t — время (ч), за которое пройден путь S.
Расстояние, которое первый лыжник:
S1 = 12 * 3 = 36 км.
Расстояние, которое первый лыжник:
S2 = 14 * 3 = 42 км.
После 3 ч одновременной ходьбы, они встретились. А так как дорого была одна и движение навстречу друг другу, то сумма расстояний, которое первый лыжник и расстояние, которое второй лыжник и есть расстояние между поселками.
S3 = S1 - S2, км
S3 = 36 + 42 = 78 км.
ответ 1: расстояние между поселками равно 78 км.
Вариант решения 2.
Расстояние, на которое сближаются лыжники за единицу времени, называют скоростью сближения vсб.
В случае движения двух лыжников навстречу друг другу, скоростью сближения равно:
vсб = v1 + v2
Если начальная расстояние между лыжниками равна S километров и лыжники встретились через tвст часов, то очевидно, что S = vсб * tвст = (v1 + v2) * tвст
vсб = 12 + 14 = 26 км/ч
S = (12 + 14) * 3 = 78 км.
ответ 2: расстояние между поселками равно 78 км.