Пошаговое объяснение:
Функция двух переменных z=f(x,y)
z=x³+2xy+y²-3x+5y+18;
1. берем частные прозводные по x и y (здесь должны стоять знаки частных производных)
dz/dx=3x²+2y-3;
dz/dy=2x+2y+5;
2. приравниваем их к 0:
3x²+2y-3=0;
2x+2y+5=0;
решаем систему уравнений
y= -(5+2x)/2;
3x²-(2x+5)/2-3=0;
3x²-x-5/2-3=0;
3x²-x-11/2=0; D=1+12*11/2=66; √D=√66=8,1
дискриминант некрасивый ((
x₁₂=1/6(1±8,1); x₁=1.5; x₂=-1,2
y₁=-(5+2*1,5)/2= -4
y₂=-(5+2*(-1,2))/2= -1,3
получаем координаты критических точек
x₁=1.5; y₁= -4; N₁
x₂=-1,2; y₂= -1,3. N₂
3. берем вторую частную производную
d²z/dx²=6x= A
d²z/dy²=2= C
d²z/dxdy=6x+2= B
4. составляем определители для обоих критических точек
x₁=1.5; y₁= -4; N₁; A=6*1,5=9;
B=6*1,5+2=11;
C=2;
Δ=lA Bl Δ=l 9 11 l
lB Cl; l 11 2 l= 18-121=-4<0 экстремума нет
x₂=-1,2; y₂= -1,3. N₂ A=6*(-1,2)=-7,2
B=6*(-1,2)+2=-5,2
C=2
Δ=l -7,2 -5,2 l
l -5,2 2 l= -14,4+27=12,6>0 экстремум есть, и т.к. А=-7,2<0, то в этой точке максимум.
Примерно так...
1) Площадь основания (ромба) So = a²sin 60° = 36*√3/2 = 18√3 см².
Проекция высоты боковой грани на основание - это половина высоты h основания: (h/2) = asin 60°/2 = 6*√3/(2*2) = 3√3/2 см.
Так как угол наклона боковой грани к основанию равен 45 градусов, то высота H пирамиды равна (h/2).
Отсюда находим объём пирамиды:
V = (1/3)SoH = (1/3)*(18√3)*(3√3/2) = 27 см³.
2) Проекция бокового ребра на основание равна стороне основания.
Площадь основания равна: So = a²3√3/2 = 1*3√3/2 = 3√3/2.
Объём пирамиды V = (1/3)SoH. Отсюда находим высоту пирамиды: Н = 3V/So = 3*6/(3√3/2) = 4√3.
Тогда боковое ребро L = 4√3*√2 = 4√6.
Пошаговое объяснение:
Функция двух переменных z=f(x,y)
z=x³+2xy+y²-3x+5y+18;
1. берем частные прозводные по x и y (здесь должны стоять знаки частных производных)
dz/dx=3x²+2y-3;
dz/dy=2x+2y+5;
2. приравниваем их к 0:
3x²+2y-3=0;
2x+2y+5=0;
решаем систему уравнений
3x²+2y-3=0;
y= -(5+2x)/2;
3x²-(2x+5)/2-3=0;
3x²-x-5/2-3=0;
3x²-x-11/2=0; D=1+12*11/2=66; √D=√66=8,1
дискриминант некрасивый ((
x₁₂=1/6(1±8,1); x₁=1.5; x₂=-1,2
y₁=-(5+2*1,5)/2= -4
y₂=-(5+2*(-1,2))/2= -1,3
получаем координаты критических точек
x₁=1.5; y₁= -4; N₁
x₂=-1,2; y₂= -1,3. N₂
3. берем вторую частную производную
d²z/dx²=6x= A
d²z/dy²=2= C
d²z/dxdy=6x+2= B
4. составляем определители для обоих критических точек
x₁=1.5; y₁= -4; N₁; A=6*1,5=9;
B=6*1,5+2=11;
C=2;
Δ=lA Bl Δ=l 9 11 l
lB Cl; l 11 2 l= 18-121=-4<0 экстремума нет
x₂=-1,2; y₂= -1,3. N₂ A=6*(-1,2)=-7,2
B=6*(-1,2)+2=-5,2
C=2
Δ=l -7,2 -5,2 l
l -5,2 2 l= -14,4+27=12,6>0 экстремум есть, и т.к. А=-7,2<0, то в этой точке максимум.
Примерно так...
1) Площадь основания (ромба) So = a²sin 60° = 36*√3/2 = 18√3 см².
Проекция высоты боковой грани на основание - это половина высоты h основания: (h/2) = asin 60°/2 = 6*√3/(2*2) = 3√3/2 см.
Так как угол наклона боковой грани к основанию равен 45 градусов, то высота H пирамиды равна (h/2).
Отсюда находим объём пирамиды:
V = (1/3)SoH = (1/3)*(18√3)*(3√3/2) = 27 см³.
2) Проекция бокового ребра на основание равна стороне основания.
Площадь основания равна: So = a²3√3/2 = 1*3√3/2 = 3√3/2.
Объём пирамиды V = (1/3)SoH. Отсюда находим высоту пирамиды: Н = 3V/So = 3*6/(3√3/2) = 4√3.
Тогда боковое ребро L = 4√3*√2 = 4√6.