Зто просто на осях Х и У. а(-4,6) это значит х=-4 у=6. Откладываем по оси х в отрицательном направлении 4 единицы, а по оси у поднимаемся вверх с этого места на 6 единиц. Получим точку а. Также в. 8 единиц по оси х. И потом вниз на 3 единицы. За единичный отрезок берем 1 клетку. ^ У *а ! 6 ! 5 ! 4 ! 3 ! 2 ! 1 -5- -4-- -3- -2-- -1--0--1--2--3--4---5--6--7--8-> Х ! -1 ! -2 ! -3 *в ! -4 ! -5 ! -6 ! -7 ! -8
^ У
*а ! 6
! 5
! 4
! 3
! 2
! 1
-5- -4-- -3- -2-- -1--0--1--2--3--4---5--6--7--8-> Х
! -1
! -2
! -3 *в
! -4
! -5
! -6
! -7
! -8
Пошаговое объяснение:
1) Область определения: D(y) (-бескон; бескон)
2) Множество значений: E(y) (-бескон; бескон)
3) проверим, является ли функция четной или нечетной:
у (x)=x³-3x²+2
y(-x)=(-x)³-3(-x)²+2=-x³-3x²+2
Так как у (-х) не=-у (х) у (-х) не=у (х) , то функция не является ни четной ни не четная.
4) Найдем нули функции:
у=0; x³-3x²+2 =0
x1=1
x²-2x-2=0
x2=1+корень из3
x3=1-корень из3
График пересекает ось абсциссв точках: (1+корень из3;0) (1;0) (1-корень из3;0)
Ось ординат график функции пересекает в точке (0;2
5) Найдем точки экстремума и промежутки возрастаний и убывания:
y'=3x²-6x; y'=0
3x²-6x=0
3x(x-2)=0
x1=0
x2=2
Так как на промежутках (-бескон; 0) и (2; бесконеч) y'> 0, то на этих промежутках функция возрастатет.
Так как на промежуткe (0;2) y'< 0, то на этих промежутках функция убывает.
Так как при переходе через точку х=2 производная меняет свой знак с - на + то в этой точке функция имеет минимум: у (2 )=8-12+2=-2
Так как при переходе через точку х=0 производная меняет свой знак с + на - то в этой точке функция имеет максимум: у (0 )=2
6) Найдем промежутки выпуклости и точки перегида:
y"=6x-6; y"=0
6x-6=0
x=1
Tак как на промежуткe (-бесконеч; 1) y"< 0, то на этом промежутке график функции направлен выпуклостью вверх
Так как на промежутке (1; бескон) y"> 0, то на этом промежутке график функции направлен выпкулостью вниз.
Точка х=1; является точкой перегиба.
у (1)=1-3+2=0
7) асимптот график данной функции не имеет
8) Все, строй график