В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Марс2014
Марс2014
22.01.2023 23:55 •  Математика

15 января планируется взять кредит в банке на 16 месяцев. условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 4% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.известно, что за первые 8 месяцев нужно выплатить банку 900 тыс. рублей. какую сумму планируется взять в кредит? ​

Показать ответ
Ответ:
sfinks98
sfinks98
04.03.2021 05:49
Попробую
{ x^2 + y^2 - 2z^2 = 2a^2
{ x + y + 2z = 4a^2 + 4
{ z^2 - xy = a^2
Умножим 3 уравнение на 2 и сложим с 1 уравнением.
x^2 + y^2 - 2z^2 + 2z^2 - 2xy = 2a^2 + 2a^2
x^2 - 2xy + y^2 = (x - y)^2 = 4a^2
x - y = +-2a; y = x -+ 2a
Получаем 2 уравнения
{ x + y + 2z = 4a^2 + 4 __ (1)
{ y = x -+ 2a _ _  _ _ _ _ _ (2)
Не обращайте внимания на нижние подчеркивания, они для выравнивания строк по горизонтали.
Подставляем уравнение (2) в уравнение (1)
x + x -+ 2a + 2z = 4a^2 + 4
Делим все на 2
x -+ a + z = 2a^2 + 2
x + z = 2a^2 +- a + 2 _ (3)
Сложим уравнения (3) и (2)
x + y + z = 2a^2 +- a + 2 + x -+ 2a = 2a^2 -+ a + 2 + x
В общем, я не могу это доказать, но у меня такое чувство, что
x + y + z = 3a^2
Тогда выражение x0 + y0 + z0 - 3a^2 = 0
0,0(0 оценок)
Ответ:
NazarKlakovych28
NazarKlakovych28
08.05.2021 06:08
Расстояние от точки М до точки F1 - это модуль вектора F1M(x1;y1).
Координаты вектора: x1=Xm-Xf1, y1=Ym-Yf1 или x1=Xm-4, y1=Ym-0.
|F1M| = √(х1²+y1²) или |MF1| = √[(Xm-4)²+(Ym-0)²].
Расстояние от точки М до точки F2 - это модуль вектора F2М(x2;y2).
И |F2M|=√[(Xm+4)²+Ym²].
Тогда наше условие можно выразить так:
√[(Xm-4)²+Ym²]-√[(Xm+4)²+Ym²]=|6|. =>
√[(Xm-4)²+Ym²]=|6|+√[(Xm+4)²+Ym²].
Возведем обе части уравнения в квадрат:
(Xm-4)²+Ym²=|6|²+2*|6|*√[(Xm+4)²+Ym²]+(Xm+4)²+Ym² =>
Xm²-8Xm+16=36+2*|6|*√[(Xm+4)²+Ym²]+Xm²+8Xm+16 =>
-8Xm=36+2*|6|*√[(Xm+4)²+Ym²]+8Xm  =>
-8Xm-18=|6|*√[(Xm+4)²+Ym²] - возводим еще раз в квадрат:
(-8Xm-18)²=36[(Xm+4)²+Ym²] =>
64Xm²+288Xm+324=36Xm²+288Xm+576+36Ym² =>
28Xm²-36Ym²=252. Или (разделим на 4) =>
7Xm²-9Ym²=63 - уравнение кривой 2-го порядка в общем виде.
Если разделим обе части на 63, то получим
Xm²/9-Ym²/7=1 или
Xm²/3²-Ym²/(√7)²=1 - каноническое уравнение гиперболы.
ответ: искомое уравнение для точек М - уравнение гиперболы
7Xm²-9Ym²=63 или Xm²/3²-Ym²/(√7)²=1

P.S. Исследование уравнения гиперболы выходит за рамки заданного вопроса.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота