Ум глазам тропу пролагает, а глаза следуют за ним утопающий хватается за свои волосы чего не нашел в хорошую погоду, не найдешь в буран чего нет в сердце, того нет и на языке что входит в один рот, входит и в сто что для одного лекарство, то для другого - яд что малая, что большая свадьба - одно и то же что одна черемша, что сто - одно и то же что прошло через одни уста, то идет через сотни что ранено саблей, опять зарастет, а что языком, не заживет что-нибудь лучше, чем ничто чужие овцы от отары чаще отбиваются чужое плохое сразу видно только пословицы нашла.
Поскольку надо найти НАИБОЛЬШЕЕ число школьников, количество книг, полученных ими должно отличаться на 1, и первый получит одну книгу, а последний Х, т.е мы имеем ряд: 1; 2; 3; 4; ...; Х Сумма ряда находится по ф-ле: S = (1 + N)*N/2, по условию она 100 книг, а N у нас Х, т.е. (1+Х)*Х/2 = 100; ⇒ Х + Х² = 200 или Х² + Х - 200 = 0; D = 1+4*200=801; D>0; Х₁ = (-1 + √D) / 2 = (-1 + √801) / 2 ≈ (-1 + 28,3) / 2 ≈ 27,3 / 2 ≈ 13,7 Х₂ = (-1 - √D) / 2 = -14,7 Так как Х - число школьников,то оно должно быть положительным и целым. Т.е Х = 13 ответ: Б) 13 школьников максимально могут получить разное количество книг, если их распределяется 100. Проверка: Мы распределим (1+13)*13/2 = 91 книг, останется 100 - 91 = 9 книг. Их уже нельзя дать 14-ому школьнику, так как 9 книг уже получено девятым. (Остаток можно распределять последним по счету).
1; 2; 3; 4; ...; Х
Сумма ряда находится по ф-ле: S = (1 + N)*N/2, по условию она 100 книг, а N у нас Х, т.е.
(1+Х)*Х/2 = 100; ⇒ Х + Х² = 200 или
Х² + Х - 200 = 0; D = 1+4*200=801; D>0;
Х₁ = (-1 + √D) / 2 = (-1 + √801) / 2 ≈ (-1 + 28,3) / 2 ≈ 27,3 / 2 ≈ 13,7
Х₂ = (-1 - √D) / 2 = -14,7
Так как Х - число школьников,то оно должно быть положительным и целым. Т.е Х = 13
ответ: Б) 13 школьников максимально могут получить разное количество книг, если их распределяется 100.
Проверка:
Мы распределим (1+13)*13/2 = 91 книг, останется 100 - 91 = 9 книг. Их уже нельзя дать 14-ому школьнику, так как 9 книг уже получено девятым. (Остаток можно распределять последним по счету).