Число А имеет 3 делителя, значит это квадрат числа а. И делители: 1, а, а^2.
(а^2=a*a- это а в квадрате)
Число В имеет 5 делителей, значит это 4-я степень числа b. И делители : 1, b, b^2, b^3, b^4. (Или делители: 1, b, b*b, b*b*b, b*b*b*b).
Так как в делителях В есть квадрат, то a не равно b. Иначе a^2 будет в делителях В и В будет делаться на А.
Значит делители А и В не совпадают.
Поэтому их произведение будет иметь 3*5=15 делителей. (Все возможные произведения делителей: надо каждое из 5 делителей В умножить на каждый делитель А).
Пошаговое объяснение:
Почему числа с 3 и 5 делителями являются степенями:
Если число простое оно имеет 2 делителя.
Если число представлено в виде произведения двух чисел a*b, то оно имеет 4 делителя:
1, a, b, a*b.
Чтобы получить 3 делителя надо приравнять a и b. И получится квадрат: 1, a, a*a
Аналогично с 5.
Если число является произведением квадрата на число: a*a*c, то делителей будет 6: 1, a, c, a*a, a*c, a*a*c.
Число А имеет 3 делителя, значит это квадрат числа а. И делители: 1, а, а^2.
(а^2=a*a- это а в квадрате)
Число В имеет 5 делителей, значит это 4-я степень числа b. И делители : 1, b, b^2, b^3, b^4. (Или делители: 1, b, b*b, b*b*b, b*b*b*b).
Так как в делителях В есть квадрат, то a не равно b. Иначе a^2 будет в делителях В и В будет делаться на А.
Значит делители А и В не совпадают.
Поэтому их произведение будет иметь 3*5=15 делителей. (Все возможные произведения делителей: надо каждое из 5 делителей В умножить на каждый делитель А).
Пошаговое объяснение:
Почему числа с 3 и 5 делителями являются степенями:
Если число простое оно имеет 2 делителя.
Если число представлено в виде произведения двух чисел a*b, то оно имеет 4 делителя:
1, a, b, a*b.
Чтобы получить 3 делителя надо приравнять a и b. И получится квадрат: 1, a, a*a
Аналогично с 5.
Если число является произведением квадрата на число: a*a*c, то делителей будет 6: 1, a, c, a*a, a*c, a*a*c.
Если а=с, то 5.
натуральное число будет наибольшим если оно начинается с наибольшей цифры(наибольшая цифра - цифра 9), поэтому вычеркиваем первые 8 цифр
останется число
910111213...5657585960
теперь нужно добиться чтобы вторая цифра была наибольшей (осталось вычеркнуть 92 цифра), вычеркиваем цифры 1011121314151617181 (всего 19 цифр),
получим число
99202122...60
теперь нужно добиться чтобы третья цифра была наибольшей (осталось вычеркнуть 73 цифры), вычеркиваем цифры 2021222324252627282 (всего 19 цифр),
получим число
9993031323360
теперь нужно добиться чтобы чертвертая цифра была наибольшей (осталось вычеркнуть 54 цифры), вычеркиваем цифры 3031323334353637383 (всего 19 цифр),
получим число
9999404142..60
теперь нужно добиться чтобы пятая цифра была наибольшей (осталось вычеркнуть 35 цифр), вычеркиваем цифры 4041424344454647484 (всего 19 цифр),
получим число
99999505152...60,
теперь нужно добиться, чтобы шестая цифра была наибольшей вычеркиваем цифры (осталось вычеркнуть 16 цифр), вычеркиваем цифры
50 51 52 53 54 55 56 5 5 (вычеркнули 5 5 а не 57 потму что 7 больше 5 и 8 больше 5 , а значит оставшееся число будет больше)
в итоге получим число
99 999 785 960
проверка 11 цифр (было всего цифр 9+10*5*2+2=111 цифр, осталось 111-100=11 цифр)
ответ: после вычеркивания наибольшее число будет 99 999 785 960