Областью определения сложных функций y=f1(f2(x)) является пересечение двух множеств: x∈D(f2) и множества всех x, для которых f2(x) ∈ D(f1). Следовательно, для того чтобы найти область определения сложной функции, необходимо решить систему неравенства.
Преимуществом онлайн калькулятора является то, что Вам нет необходимости знать и понимать, как находить область определения функции. Чтобы получить ответ, укажите функцию, для которой Вы хотите найти область определения. Основные примеры ввода функций и переменных для данного калькулятора указаны ниже.
Примеры функций: sqrt(16-ln(x^2))/sin(x)) или (5x^7+4x^6-3)/((3+2x-x^2)x^4)
Даны точки A(-1;5) и B(7;-3). Находим середину отрезка АВ - координаты точки С. С((-1+7)/2=3; (5-3)/2=1) = (3; 1). Точка, яка рівновіддалена від точок A и B находится на срединном перпендикуляре СД к отрезку АВ (Д - точка на оси абсцисс). Угловой коэффициент АВ = Δу/Δх = -8/8 = -1. Тогда угловой коэффициент СД = -1/(-1) = 1. Уравнение СД: у = х + в. Коэффициент в находим, подставив координаты точки С: 1 = 3 + в. в = 1 - 3 = -2. Уравнение СД: у = х - 2. Точка Д имеет у = 0, тогда х = 2.
ответ: координати точки, яка належить осі абсцис і рівновіддалена від точок A(-1;5) i B(7;-3): Д(2; 0).
Областью определения сложных функций y=f1(f2(x)) является пересечение двух множеств: x∈D(f2) и множества всех x, для которых f2(x) ∈ D(f1). Следовательно, для того чтобы найти область определения сложной функции, необходимо решить систему неравенства.
Преимуществом онлайн калькулятора является то, что Вам нет необходимости знать и понимать, как находить область определения функции. Чтобы получить ответ, укажите функцию, для которой Вы хотите найти область определения. Основные примеры ввода функций и переменных для данного калькулятора указаны ниже.
Примеры функций: sqrt(16-ln(x^2))/sin(x)) или (5x^7+4x^6-3)/((3+2x-x^2)x^4)
Находим середину отрезка АВ - координаты точки С.
С((-1+7)/2=3; (5-3)/2=1) = (3; 1).
Точка, яка рівновіддалена від точок A и B находится на срединном перпендикуляре СД к отрезку АВ (Д - точка на оси абсцисс).
Угловой коэффициент АВ = Δу/Δх = -8/8 = -1.
Тогда угловой коэффициент СД = -1/(-1) = 1.
Уравнение СД: у = х + в.
Коэффициент в находим, подставив координаты точки С:
1 = 3 + в.
в = 1 - 3 = -2. Уравнение СД: у = х - 2.
Точка Д имеет у = 0, тогда х = 2.
ответ: координати точки, яка належить осі абсцис і рівновіддалена від точок A(-1;5) i B(7;-3): Д(2; 0).