16 минут = 16/60 часа = 4/15 часа. Пусть х - скорость автомобиля до переезда. Тогда х+10 - скорость после переезда. 80/х - время, которое автомобиль затратил бы на путь, если бы двигался с первоначальной скоростью. 80/(х+10) - время, которое автомобиль затратил на путь, двигаясь с увеличенной на 10 км/ч скоростью. Уравнение: 80/х - 80(х+10) = 4/15 Умножим обе части уравнения на 15х(х+10): 15•80х(х+10)/х - 15•80х(х+10)/(х+10)= 15•4х(х+10)/15 1200(х+10) - 1200х = 4х(х+10) 1200х + 12000 - 1200х = 4х² + 40х 4² + 40х - 12000 = 0 Разделим обе части уравнения на 4 х² + 10х - 3000 = 0 D = 10² - 4(-3000) = 100 + 12000 = 12100 √D = √12100 = 110 х1 = (-10 - 110)/2 = -120/2 = -60 - не подходит по условию задачи х2 = (-10 + 110)/2 = 100/2 = 50 км/ч - первоначальная скорость.
Пусть х - скорость автомобиля до переезда.
Тогда х+10 - скорость после переезда.
80/х - время, которое автомобиль затратил бы на путь, если бы двигался с первоначальной скоростью.
80/(х+10) - время, которое автомобиль затратил на путь, двигаясь с увеличенной на 10 км/ч скоростью.
Уравнение:
80/х - 80(х+10) = 4/15
Умножим обе части уравнения на 15х(х+10):
15•80х(х+10)/х - 15•80х(х+10)/(х+10)= 15•4х(х+10)/15
1200(х+10) - 1200х = 4х(х+10)
1200х + 12000 - 1200х = 4х² + 40х
4² + 40х - 12000 = 0
Разделим обе части уравнения на 4
х² + 10х - 3000 = 0
D = 10² - 4(-3000) = 100 + 12000 = 12100
√D = √12100 = 110
х1 = (-10 - 110)/2 = -120/2 = -60 - не подходит по условию задачи
х2 = (-10 + 110)/2 = 100/2 = 50 км/ч - первоначальная скорость.
Пошаговое объяснение:
По условию задачи известно, что длина и ширина прямоугольника составляют 15 метров и 8 метров соответственно.
Вычислим чему равна площадь данного прямоугольника:
S = a * b.
S = 15 * 8 = 120 м².
Определим чему будет равна ширина если её увеличить на 6 метров:
8 + 6 = 14 м.
Вычислим площадь нового прямоугольника:
S = 15 * 14 = 210 м².
Вычислим сколько процентов составляет новая площадь от предыдущей:
210 / 120 = 1,75 = 175%.
Определим на сколько процентов она увеличилась:
175 - 100 = 75%.