1. Все металлы делятся на чёрные, цветные, драгоценные 2. Свойство воспринимать воздействие не разрушаясь - прочность 3.Чугун сплав железа с углеродом более 2% углерода 4. Сталь сплав железа с углеродом, менее 2% углерода 5. По химическому составу стали бывают углеродистые и легированные 6. В зависимости от назначения - конструкционные и инструментальные 7. Свойства углеродистой стали зависят от содержания легирующих элементов и примесей 8. Цветные металлы - медь, алюминий, олово, цинк, серебро 9. Сплавы металлов получают путем смешивания одного металла с другими или металла с неметаллическими элементами. 10. Цели получения сплавов - получение материалов с нужными свойствами
Алгоритм решения системы линейных уравнений с двумя неизвестными сложения. 1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях. 2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным 3. Решить полученное уравнение с одним неизвестным и найти одну из переменных. 4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную. 5. Сделать проверку решения.
2. Свойство воспринимать воздействие не разрушаясь - прочность
3.Чугун сплав железа с углеродом более 2% углерода
4. Сталь сплав железа с углеродом, менее 2% углерода
5. По химическому составу стали бывают углеродистые и легированные
6. В зависимости от назначения - конструкционные и инструментальные
7. Свойства углеродистой стали зависят от содержания легирующих элементов и примесей
8. Цветные металлы - медь, алюминий, олово, цинк, серебро
9. Сплавы металлов получают путем смешивания одного металла с другими или металла с неметаллическими элементами.
10. Цели получения сплавов - получение материалов с нужными свойствами
1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях.
2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным
3. Решить полученное уравнение с одним неизвестным и найти одну из переменных.
4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную.
5. Сделать проверку решения.