Уравнение прямой на координатной плоскости имеет вид:
y = kx + b
где k – это и есть угловой коэффициент прямой.
Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.
k = tgα
где α - это угол между прямой и осью Ох
Он лежит в пределах от 0 до 180 градусов.
То есть, если мы приведём уравнение прямой к виду y = kx + b, то далее всегда сможем определить коэффициент k (угловой коэффициент).
Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.
Найти угловой коэффициент можно разными
Вариант 1
Уравнение прямой проходящей через две данные точки имеет вид:
где (х₁,у₁) и (х₂,у₂) - координаты точек прямой
В нашем случае (2,4) и (0,0)
Запишем уравнение прямой
y = 2x
Вариант 2
Поскольку прямая проходит через начало координат(0,0) то b = 0
Следовательно уравнение прямой имеет вид
у = kx
и подставив в уравнение координаты точки прямой (2,4)
мы найдем угловой коэффициент
4 = 2k
k = 2
Вариант 3
Так как угловой коэффициент численно равен tgα где α угол наклона прямой, то найдем tgα из прямоугольного треугольника с координатами (0,0), (2,4) и (2,0).
У данного прямоугольного треугольника противолежащий к углу катет равен 4(y=4), а прилежащий к углу катет равен 2(x=2)
Пошаговое объяснение:
1) 43 дм³- 59 см³=42 941 см³=42,941 дм³
1 дм³= 1000 см³
43 дм³=43 000 см ³
43000см³-59 см³=42 941 см³=42,941 дм³
2) 74 м³- 145 дм³=73,855 м³
1 м³=1000 дм³
74 м³=74 000 дм³
74 000-145=73 855 дм³=73,855 м³
3) 50 см³ - 35 мм³=49,965 см³
1 см³=1000 мм³
50 см³=50 000 мм³
50 000-35=49 965 мм³= 49,965 см³
4) 10 см³ - 63 мм³=10 000 мм³-63 мм³=9937 мм³=9,037 см³
5) 1 м³- 4750 см³= 995 250 см³=0,99525 м³
1 м³= 1 000 000 см³
1 000 000 - 4750=995 250 см³
6) 69 см³-609 мм³=69000-609=68 391 мм³=68,391 см³
Уравнение прямой на координатной плоскости имеет вид:
y = kx + b
где k – это и есть угловой коэффициент прямой.
Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.
k = tgα
где α - это угол между прямой и осью Ох
Он лежит в пределах от 0 до 180 градусов.
То есть, если мы приведём уравнение прямой к виду y = kx + b, то далее всегда сможем определить коэффициент k (угловой коэффициент).
Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.
Найти угловой коэффициент можно разными
Вариант 1
Уравнение прямой проходящей через две данные точки имеет вид:
где (х₁,у₁) и (х₂,у₂) - координаты точек прямой
В нашем случае (2,4) и (0,0)
Запишем уравнение прямой
y = 2x
Вариант 2
Поскольку прямая проходит через начало координат(0,0) то b = 0
Следовательно уравнение прямой имеет вид
у = kx
и подставив в уравнение координаты точки прямой (2,4)
мы найдем угловой коэффициент
4 = 2k
k = 2
Вариант 3
Так как угловой коэффициент численно равен tgα где α угол наклона прямой, то найдем tgα из прямоугольного треугольника с координатами (0,0), (2,4) и (2,0).
У данного прямоугольного треугольника противолежащий к углу катет равен 4(y=4), а прилежащий к углу катет равен 2(x=2)
Следовательно k=2
Пошаговое объяснение: