1) найдите дифференциал функции у=cos ^3x dy=y' *dx = 3cosx*(-sinx)dx =(-3cosx*sinx)dx =(-3/2sin2x)dx 2) у=корень(2-х^2) dy =y' *dx = (1/2)(2-x^2)^(-1/2)*(-2x)*dx = (-x/корень(2-x^2))dx или если функция y=корень(2)-x^2 dy = y' *dx = -2xdx 3. решить уравнение 3^(x+2) +9^(x+1) -810=0 9*3^x+9*9^x-810=0 3^x+3^(2x)-90=0 замена переменных 3^x=y y^2+y-90=0 d=1+ 360 =361 y1=(1-19)/2 =-9 ( не может быть так как 3^x не может быть отрицательным) y2=(1+19)/2 =10 найдем х 3^x =10 x=log_3(10)=ln10/ln3 = 2,1
Туристы в первый день 3/8 всего маршрута, во второй день 40% остатка, после чего им осталось пройти на 3 км больше, чем было пройдено во второй день. Сколько же километров им осталось пройти?
РЕШЕНИЕ: Пусть общая длина маршрута х. Тогда в первый день туристы х, после этого им осталось пройти х-0.375х=0.625х. Во второй день они х=0.25х, соответственно осталось пройти 0.625х-0.25х=0.375х. По условию эта величина на 3 км больше пройденного во второй день расстояния 0.25х.
6/Задание № 4:
Туристы в первый день 3/8 всего маршрута, во второй день 40% остатка, после чего им осталось пройти на 3 км больше, чем было пройдено во второй день. Сколько же километров им осталось пройти?
РЕШЕНИЕ: Пусть общая длина маршрута х. Тогда в первый день туристы х, после этого им осталось пройти х-0.375х=0.625х. Во второй день они х=0.25х, соответственно осталось пройти 0.625х-0.25х=0.375х. По условию эта величина на 3 км больше пройденного во второй день расстояния 0.25х.
0.375х-0.25х=3
0.125х=3
х=24
Осталось пройти 0.375х=0.375*24=9
ОТВЕТ: 9 км