2. Даны A(-5;0;1), B(-4;-2;3), C(6;2;11). Найдите: 1) зCA+ 4Ab-4/3bc
2) периметр треугольника АВС
3) уравнение меднаны BD треугольника АВС;
4) угол между АВи АС
3. ABCDA B C D,-прямоугольный параллелепипед, A(6;0;0), B(0;0;0), C(0;5;0), B1(0;0;2)
Постройте этот параллелепипед на координатной плоскости Оxyz
Найдите координаты точек C1,D1,D, A1; Найдите AD*CD;
Найдите уравнение плоскости A1 C D,
1) Фермер имеет 3 делянки с картофелем площадью соответственно 10 а, 20 а и 30 а. С первой делянки он собрал урожай 17,4 ц, со второй - 30 ц, а с третьей - 46,8 ц. Определи урожайность картофеля на каждой из делянок и среднюю урожайность всего картофельного поля.
2) Колхоз засеял пшеницей два поля. Площадь первого поля 75 га, а площадь второго поля на 50 га меньше. С первого поля собрали урожай 2580 ц, а со второго -720 ц. На сколько урожайность первого поля была выше, чем второго? Чему равна средняя урожайность пшеницы в этом колхозе?
25 апреля 2017
1 ответ
ОТВЕТЫ 1
Эльвира Малова
1) 10a 17,4 ц 1,74 ц/а
20а 30 ц 30/20 = 1,5 ц/а
30а 46,8 ц 46,8/30 = 1,56 ц/а
Урожайность 1 делянки самая высокая, 2-й -самая низкая.
ответ: 1,74 ц/а; 1,5 ц/а; 1,56 ц/а; 1,37 ц/а.
2) 75 га 2580 ц 2580/75 = 34,4 ц/га
25 га 720 ц 720/25 = 28,8 ц/га
Урожайность 1-го поля больше на (34,4 - 28,8) ц/га или 5,6 ц/га.
ответ: 1 поле больше на 5,6 ц/га; 22 ц/га.
Пошаговое объяснение:
Пошаговое объяснение:
№3
Дано: ΔАВС, АА₁, ВВ₁ - биссектрисы. АА₁ ∩ ВВ₁ = М.
∠АМВ = 128°.
Найти: ∠МСВ₁.
Из ΔАМВ: ∠МАВ + ∠МВА = 180° - 128° = 52° (сумма углов треугольника 180°)
∠МАВ и ∠МВА половины углов ВАС и АВС. Значит,
∠ВАС + ∠АВС = 52° · 2 = 104°
Тогда, ∠АСВ = 180° - (∠ВАС + ∠АВС) = 180° - 104° = 76°.
М - точка пересечения биссектрис, значит, СМ - биссектриса угла АСВ.
Тогда ∠МСВ₁ = ∠АСВ/2 = 76°/2 = 38°
ответ: 38°
№4.
Дано: ΔMKN, MK = 17, MD = DN, D∈MN, CD⊥MN, C∈MK, CN = 10
Найти: СК.
CD - серединный перпендикуляр к MN. Все точки серединного перпендикуляра к отрезку равноудалены от его концов. Значит, MC = CN = 10.
CK = MK - MC = 17 - 10 = 7
ответ: 7
№7
Дано: ΔMEN, EF и MK - медианы, EF ⊥ MK, EF ∩ MK = О.
EF = 18, MK = 15.
Найти: ON.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
OF = EF/3 = 18/3 = 6, OE = 2OF = 12
OK = MK/3 = 15/3 = 5, ON = 2OK = 10
ΔЕОК: ∠ЕОК = 90°, по теореме Пифагора
ЕК = √(ОК² + OE²) = √(144 + 25) = √169 = 13
cos∠OEK = OE/EK = 12/13
EN = 2EK = 26
ΔOEN по теореме косинусов:
ON² = OE² + EN² - 2OE·EN·cos∠OEN
ON² = 144 + 676 - 2 · 12 · 26 · 12/13 = 820 - 576 = 244
ON = 2√61
ответ: 2√61
№8
Дано: ΔАВС, О - точка пересечения серединных перпендикуляров к AC и ВС.
∠АОВ = 120°, АB = 20
Найти: ОС.
Т.к. О - точка пересечения серединных перпендикуляров, О - центр окружности, описанной около ΔАВС. Тогда ОА = ОВ = ОС как радиусы.
ΔАОВ:
пусть ОА = ОВ = х, тогда по теореме косинусов:
АВ² = OA² + OB² - 2OA·OB·cos120°
400 = x² + x² + 2x²·1/2
400 = 2x² + x²
3x² = 400
x² = 400/3
x = 20/√3 = 20√3/3
ответ: ОС = 20√3