2. есепті шығар.екі наубайшы бірдей уақыт жұмыс жасады. осы уалішінде бірінші наубайшы сағатына 25 тәтті наннан іго тенан пісірді. ал екінші наубайшы сағатына 32 тәтті напісірсе, осы уақытта қанша тәтті нан пісірдибе
Если в треугольнике все углы составляют более 60°, то сумма углов составит более 180°. Следовательно хотя бы один угол составляет не более 60°.
1) Пусть a + b + c = (3/2)pi, a > 0, b > 0, c > 0, ((2/3)a, (2/3)b, (2/3)c) - углы треугольника. Если a=b=c = pi/2, то равенство выполняется ! Поэтому есть наименьшая величина, например c, где a+b = (3/2)*pi - c, 0 < c < pi/2, и pi < a+b < pi+pi/2.
Допустим, это не так. Значит остаток чисел от деления на 3 может быть только 1 или 2. Следующее число не может иметь такой же остаток в случае прибавления или вычитания 1 или 2, без обнуления остатка, только смена значения с 1 на 2 и наоборот. При увеличении на 2 остаток также увеличивается в 2 раза, и его значение меняется с 1 на 2 или с 2 на 1 (удвоенный остаток 2 равен 4, что аналогично остатку 1). При уменьшении в 2 раза ситуация аналогичная, обратная рассмотренным примерам с умножением. Мы рассмотрели все возможные случаи. Получается только чередование чисел с остатками ...1, 2, 1, 2... Поскольку число 2015 нечётное, то в конце встречаются два числа с одинаковыми остатками и преобразовать одно число в другое без изменения остатка разрешёнными условием задачи методами невозможно. Налицо противоречие.
1) Пусть a + b + c = (3/2)pi, a > 0, b > 0, c > 0, ((2/3)a, (2/3)b, (2/3)c) - углы треугольника.
Если a=b=c = pi/2, то равенство выполняется ! Поэтому есть наименьшая величина, например c, где a+b = (3/2)*pi - c, 0 < c < pi/2, и pi < a+b < pi+pi/2.
2) Исходное равенство :
sin(a) + sin(b) - sin(c) - ( cos(a) + cos(b) + cos(c) ) = 1 ( * )
Известно, что sin( pi/2 + x ) = cos(x), sin(c) = sin( 3/2*pi - (a+b) ) = - cos(a+b), cos(c) = -sin(a+b).
Из ( * ) > (sin(a)-cos(a)) + (sin(b)-cos(b)) + (cos(a+b) + sin(a+b)) = 1, ( sin(a) - sin( a + pi/2) ) + ( sin(b) - sin( b + pi/2) ) + ( sin( a+b) +
sin( a+b+pi/2) ) = 1 > sin(a+b+pi/4) - sqrt(2)/2 = cos(a+pi/4) + cos(b+pi/4) > sin(a+b+pi/4) - sin(pi/4) =cos(a+pi/4) + cos(b+pi/4) >
2sin((a+b)/2)*cos((a+b)/2 + pi/4) = 2cos((a+b)/2+pi/4)*cos((a-b)/2) >
sin((a+b)/2)*cos((a+b)/2+pi/4) = cos((a+b)/2+pi/4)*cos((a-b)/2) [/b] .
Так pi/2 + pi/4 < (a+b)/2 + pi/4 < pi, то cos((a+b)/2+pi/4) <> 0 !
Тогда sin((a+b)/2) = cos((a-b)/2) >
sin((a+b)/2) - sin((a-b)/2 + pi/2) = 0 >
sin((b-pi/2)/2)*cos((a+pi/2)/2) = 0, b = pi/2 или УГОЛ(b) = pi/3 ,
a + pi/2 = pi, a = pi/2. Равенство a + pi/2 = 3pi невозможно !
ответ один из углов всегда будет 60 градусов
Следующее число не может иметь такой же остаток в случае прибавления или вычитания 1 или 2, без обнуления остатка, только смена значения с 1 на 2 и наоборот. При увеличении на 2 остаток также увеличивается в 2 раза, и его значение меняется с 1 на 2 или с 2 на 1 (удвоенный остаток 2 равен 4, что аналогично остатку 1). При уменьшении в 2 раза ситуация аналогичная, обратная рассмотренным примерам с умножением.
Мы рассмотрели все возможные случаи. Получается только чередование чисел с остатками ...1, 2, 1, 2... Поскольку число 2015 нечётное, то в конце встречаются два числа с одинаковыми остатками и преобразовать одно число в другое без изменения остатка разрешёнными условием задачи методами невозможно. Налицо противоречие.