б) (МС₁С) ∩ (ВСВ₁) = СС₁, так как обе точки - С и С₁ - принадлежат двум плоскостям.
Прямая MD₁ лежит в тех плоскостях, в которых лежат обе точки - М и D₁: (ADD₁), (MD₁C₁)
A2.
а) РК лежит в плоскости (АА₁D), эта плоскость пересекает (АВС) по прямой AD. Поэтому находим точку пересечения прямых AD и РК - точку Е. Это и есть точка пересечения прямой РК и плоскости (АВС).
РК ∩ (АВС) = Е.
б) Чтобы построить линию пересечения плоскостей (РКС) и (ADC) надо найти или построить две точки, принадлежащие этим двум плоскостям.
Точка Е лежит на прямых РК и AD, значит принадлежит двум плоскостям. Точка С принадлежит плоскости (РКС), это видно из названия, и плоскости (ADC). Значит ЕС - искомая прямая.
Х и у стороны прямоугольника Из условия задачи известна что : 1) ( х + у) * 2 = 30 или х + у = 15 х = 15 - у ; также известно что : х * у = 36 . Подставим значение х из первого уравнения . Получим : (15 - у) * у = 36 15у - у^2 = 36 y^2 - 15y + 36 = 0 Найдем дискриминант уравнения D . D = (- 15)^2 - 4 * 1 * 36 = 225 - 144 = 81 . sqrt (D) = sqrt (81) = 9 Найдем квадратные корни уравнения : 1-ый = (-(-15) + 9) /2*1 = (15 + 9)/2 = 12 ; 2-ой - (-(-15) - 9) /2*1 = (15 - 9) /2 = 3 Одно из сторон прямоугольника равна : 12 см или 3 см а другая исходя из уравнения х = 15 - у будет равна : 3 см или 12 см
А1.
а) МС ∩ (В₁ВС) = С;
б) (МС₁С) ∩ (ВСВ₁) = СС₁, так как обе точки - С и С₁ - принадлежат двум плоскостям.
Прямая MD₁ лежит в тех плоскостях, в которых лежат обе точки - М и D₁: (ADD₁), (MD₁C₁)
A2.
а) РК лежит в плоскости (АА₁D), эта плоскость пересекает (АВС) по прямой AD. Поэтому находим точку пересечения прямых AD и РК - точку Е. Это и есть точка пересечения прямой РК и плоскости (АВС).
РК ∩ (АВС) = Е.
б) Чтобы построить линию пересечения плоскостей (РКС) и (ADC) надо найти или построить две точки, принадлежащие этим двум плоскостям.
Точка Е лежит на прямых РК и AD, значит принадлежит двум плоскостям. Точка С принадлежит плоскости (РКС), это видно из названия, и плоскости (ADC). Значит ЕС - искомая прямая.
(РКС) ∩ (ADC) = ЕС.
Из условия задачи известна что : 1) ( х + у) * 2 = 30 или х + у = 15
х = 15 - у ; также известно что : х * у = 36 . Подставим значение х из первого уравнения . Получим : (15 - у) * у = 36 15у - у^2 = 36
y^2 - 15y + 36 = 0 Найдем дискриминант уравнения D .
D = (- 15)^2 - 4 * 1 * 36 = 225 - 144 = 81 . sqrt (D) = sqrt (81) = 9
Найдем квадратные корни уравнения : 1-ый = (-(-15) + 9) /2*1 = (15 + 9)/2 = 12 ; 2-ой - (-(-15) - 9) /2*1 = (15 - 9) /2 = 3
Одно из сторон прямоугольника равна : 12 см или 3 см а другая исходя из уравнения х = 15 - у будет равна : 3 см или 12 см