2 Рассмотри таблицу. ответы на вопросы. t и производи- тельность время А работа 15 дет/ч Мастер 8 ч Ученик мастера 7 дет/ч 2 де Weed 2 дет/д 3 дня 48 блузок 3 дня 96 дет Токарь Наборщик текста Кулинар 2 деr /д. 2 стр./мин 25 кексов/ч 2 мин 36 стр. 24 100 кексов
Пример 1. График какой функции является возрастающим:
а) ; б) у = х3 – 27; в) y=2-x?
Рассмотрим каждую из функций в отдельности:
а) – степенная функция. Область определения этой функции: . На всей области определения функция монотонна.
Возьмём два значения х1 = 1 и х2 = 4. Им соответствует у1 = – 1, у2 = – 2. Видим, что если х1 < x2 , то у1 > у2. Функция убывающая.
б) у = х3 – 27 – алгебраическая функция. Область определения – множество всех действительных чисел. На всей области определения функция монотонна. Возьмём два значения х1 = 3, х2 = 4. Им соответствует у1 = 0, у2 = 37.
Видим, что если х1 < x2 , то и у1 < у2. Функция возрастающая.
в) y=2-x – показательная функция. Областью определения является множество всех действительных чисел. На всей области определения функция монотонна. Пусть х1 = 0, х2 = 1. Им соответствуют у1 = 1, у2 = 0,5.
Видим, что если х1 < x2 , то у1 > у2. Функция убывающая.
ответ: б) у = х3 – 27.
Пример 2. Парабола у = 2х2 – (а – 3)х + а + 3 проходит через начало координат. Найдите абсциссу вершины параболы.
Найдём значение параметра а. Т.к. парабола проходит через начало системы координат, то координаты точки (0; 0) являются корнями уравнения параболы: 0 = 2 ∙ 02 – (а – 3) ∙ 0 + а + 3; а = – 3.
Уравнение параболы примет вид: у = 2х2 + 6х.
Абсцисса вершины параболы находится по формуле: . Получаем .
1) n=50, 5,15,25,35,45,50- 6 чисел 50-6=44 в этом количестве чисел нет цифры 5, т.е. m=44 P=m/n=44/50=0.88 2)P=m/n (a;b) цифры номера.от 1 до 9. 9*9=81, т.к. цифры различные, то (1,1),(2,2)...(9,9)- всего 9 шт. в общее количество возможных вариантов не входят. n=81-9=72. только одна верная комбинация цифр в телефоне, т.е. m=1. P=1/72. 4) (п,н), (п,п),(н,н), (н,п). Первый попадает с вероятностью 0,6, промахивается с вероятностью 1-06=0,4. Второй попадает-0,7, промахивается- 0,3. Нужно найти вероятность. п-попадание в цель, н- не попадание в цель. (п,н)+(н,п)= 0,6*0,3+0,4*0,7=0,18+0,28=0,46. 5) 5 рабочих. 3 пойдут к врачу, 2 нет. (п, п, п, н, н)=5!/(3!*2!)0,8*0,8*0,8*0,2*0,2=0,04096*10=0,4096 3) в куб вписан шар. вероятность того что точка окажется внутри шара. Р=Vшара/Vкуба= 4/3piR^3/8R^3=pi/6≈0.5233
Пример 1. График какой функции является возрастающим:
а) ; б) у = х3 – 27; в) y=2-x?
Рассмотрим каждую из функций в отдельности:
а) – степенная функция. Область определения этой функции: . На всей области определения функция монотонна.
Возьмём два значения х1 = 1 и х2 = 4. Им соответствует у1 = – 1, у2 = – 2. Видим, что если х1 < x2 , то у1 > у2. Функция убывающая.
б) у = х3 – 27 – алгебраическая функция. Область определения – множество всех действительных чисел. На всей области определения функция монотонна. Возьмём два значения х1 = 3, х2 = 4. Им соответствует у1 = 0, у2 = 37.
Видим, что если х1 < x2 , то и у1 < у2. Функция возрастающая.
в) y=2-x – показательная функция. Областью определения является множество всех действительных чисел. На всей области определения функция монотонна. Пусть х1 = 0, х2 = 1. Им соответствуют у1 = 1, у2 = 0,5.
Видим, что если х1 < x2 , то у1 > у2. Функция убывающая.
ответ: б) у = х3 – 27.
Пример 2. Парабола у = 2х2 – (а – 3)х + а + 3 проходит через начало координат. Найдите абсциссу вершины параболы.
Найдём значение параметра а. Т.к. парабола проходит через начало системы координат, то координаты точки (0; 0) являются корнями уравнения параболы: 0 = 2 ∙ 02 – (а – 3) ∙ 0 + а + 3; а = – 3.
Уравнение параболы примет вид: у = 2х2 + 6х.
Абсцисса вершины параболы находится по формуле: . Получаем .
ответ: – 1, 5.
Пошаговое объяснение:
5,15,25,35,45,50- 6 чисел
50-6=44 в этом количестве чисел нет цифры 5, т.е. m=44
P=m/n=44/50=0.88
2)P=m/n
(a;b) цифры номера.от 1 до 9. 9*9=81, т.к. цифры различные, то (1,1),(2,2)...(9,9)- всего 9 шт. в общее количество возможных вариантов не входят. n=81-9=72. только одна верная комбинация цифр в телефоне, т.е. m=1. P=1/72.
4) (п,н), (п,п),(н,н), (н,п). Первый попадает с вероятностью 0,6, промахивается с вероятностью 1-06=0,4. Второй попадает-0,7, промахивается- 0,3. Нужно найти вероятность. п-попадание в цель, н- не попадание в цель. (п,н)+(н,п)= 0,6*0,3+0,4*0,7=0,18+0,28=0,46.
5) 5 рабочих. 3 пойдут к врачу, 2 нет. (п, п, п, н, н)=5!/(3!*2!)0,8*0,8*0,8*0,2*0,2=0,04096*10=0,4096
3) в куб вписан шар. вероятность того что точка окажется внутри шара. Р=Vшара/Vкуба= 4/3piR^3/8R^3=pi/6≈0.5233