2. Решить карточку и отправить по электронной почте или ВК.
1. Вычислите:
1) 0,024 ∙ 4,5; 3) 2,86 : 100; 5) 0,48 : 0,8;
2) 29,41 ∙ 1 000; 4) 4 : 16; 6) 9,1 : 0,07.
2. Найдите значение выражения: (4 – 2,6) ∙ 4,3 + 1,08 : 1,2.
3. Решите уравнение: 2,4 ( + 0,98) = 4,08.
4. Моторная лодка плыла 1,4 ч по течению реки и 2,2 ч против течения. Какой путь преодолела лодка за всё время движения, если скорость течения равна 1,7 км/ч, а собственная скорость лодки – 19,8 км/ч?
5. Если в некоторой десятичной дроби перенести запятую вправо через одну цифру, то она увеличится на 14,31. Найдите эту дробь.
Указания по выполнению карточки смотри на следующей стр.
Указания по выполнению карточки
Задание 1: Пример переписываем в строчку, ниже выполняем столбиком строго по образцу, затем полученный ответ записываем в пример, записанный ранее.
Задание 2: Пример переписываем, расставляем все действия и ниже столбиком все действия выполняем. Результат, полученный в последнем действии, записываем в пример после знака равно.
Задание 3: Решить уравнение и выполнить проверку. Как выполнены действия показывать не надо. Уравнения решаем строго по образцу.
Задание 4: Задача выполняется по действиям, столбиком показывать каждое действие необязательно.
Задание 5: Образец решения показан в данном вложении
Решение:
1.) Проведем 2 высоты - DH и CT. Они равны, т.к. обе перпендикулярны одной стороне AD. Т.к. трапеция равнобедренная, угл A = углу D. Следовательно, прямоугольные треугольники ABH и CDT равны по катету и острому углу, а след. AH = TD.
2.) AH = TD по доказанному. Т.к. BC = HT, след AH = TD = (23 - 11)/2 = 6
3. ) Площадь трапеции = ((BC + AD)/2 )*h = ((23 + 11)/2)* h = 17*h (h - высота)
4. ) S = 17*h, а по условию S = 136. Составляем уравнение - 136 = 17*h, h = 8
5. ) Рассмотрим прямоугольный треугольник ABH. AH = 6 по доказанному. BH = 8 по доказанному. По теореме Пифагора AB^2 = BH^2 + AH^2. Составим уравнение, где X = AB. X^2 = 6^2 + 8^2. X^2 = 36 + 64. X^2 = 100. X = 10
Следовательно, боковая сторона трапеции = 10