В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mixon2
mixon2
08.10.2021 17:50 •  Математика

2) Сторона квадрата равна 16 см. Найдите площадь второго квад- 1
рата, если его периметр составляет от периметра первого
32
квадрата.
напишите как задача (с краткой записью)

Показать ответ
Ответ:
зефирка39
зефирка39
15.02.2023 16:27
Родиться мужчиною мне повезло,
Быть сильным и стойким, всем бедам назло!
Пока что я в школе простой ученик,
Но двойками мой не испорчен дневник.
Учиться прилежно совсем не ленюсь,
И к знаниям новым охотно стремлюсь.
Люблю я компьютер, футбол и борьбу, -
Со спортом свою подружил я судьбу.
Пускай прозвучит это несколько грубо,
Но жизнь – это клёво, и жизнь – это круто!
А будут проблемы к нам –
К простым и отзывчивым богатырям!
Сильный и ловкий, Водит машину. Кто я такой? Настоящий мужчина! Ну и для самых умных юных всезнаек: Знаю я всё на уроках, На вопросы отвечаю, Понимаю всё на свете, И науку уважаю! 
0,0(0 оценок)
Ответ:
Liza6789456
Liza6789456
01.06.2023 20:25

1) xy''-y'=e^xx^2

Поскольку x = 0 не является решением данного дифференциального уравнения, то поделим обе части уравнения на x^2, получаем

\dfrac{xy''-y'}{x^2}=e^x

В левой части уравнения это ни что иное как формула производной частного, то есть :

\left(\dfrac{y'}{x}\right)'=e^x

\dfrac{y'}{x}=\displaystyle \int e^xdx=e^x+C_1\\ \\ y'=xe^x+C_1x\\ \\ y=\int \Big(xe^x+C_1x)dx=\int xe^xdx+\int C_1xdx~\boxed{=}

Подсчитаем отдельный интеграл I_1 по частям.

I_1=\displaystyle \int xe^xdx=\left|\left|\begin{array}{ccc}u=x;~~~ du=dx\\ \\ dv=e^xdx;~~ v=e^x\end{array}\right|\right|=uv-\int vdu=xe^x-\int e^xdx=\\ \\ \\ =xe^x-e^x+C_2

\boxed{=}~ xe^x-e^x+C_2+\dfrac{C_1x^2}{2}=e^x(x-1)+\dfrac{C_1x^2}{2}+C_2

2) y''-3y'=0

Это линейное однородное дифференциальное с постоянными коэффициентами. Замена y=e^{kx}, перейдём к характеристическому уравнению: k^2-3k=0, k(k-3)=0 корни которого k_1=0 и k_2=3. Тогда общее решение диф. уравнения: y=C_1+C_2e^{3x} и его первая производная y'=3C_2e^{3x}.

Осталось найти константы C₁ и C₂ , подставляя начальные условия.

\displaystyle \left \{ {{1=C_1+C_2} \atop {6=3C_2}} \right. ;~~\left \{ {{C_1=-1} \atop {C_2=2}} \right.

y=-1+2e^{3x} — частное решение.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота