ГМТ, удалённых от заданной точки на заданное расстояние - это окружность с радиусом, равным заданному расстоянию. Координаты точки Х находим совместным решением уравнений таких окружностей. Поместим квадрат АВСД в прямоугольную систему координат точкой А в начало, стороной АД по оси Ох. Точка А (0; 0), точка С (1; 1). Уравнение окружности с центром в точке А: х² + у² = 5. Уравнение окружности с центром в точке С: (х - 1)² + (у - 1)² = 7.
Решаем систему:
Раскроем скобки:
Подставим вместо х² + у² число 5 и получим: -2х - 2у = 0 или у = - х. Это говорит о том, что точка Х лежит на прямой у = -х. Подставим это свойство в первое уравнение: х² + (-х)² = 5, 2х² = 5, х = +-√(5/2) ≈ +- 1,5811388. Тогда у = -+ 1,5811388. Имеем две точки, где может находиться точка Х: Х((-√(5/2)); √(5/2)) и Х₁((√(5/2)); -√(5/2)). Имеем и 2 расстояния от точки Х до точки В. Расстояние между точками. d = √((х2 - х1)² + (у2 - у1 )²). BХ = 1,684554, BХ1 = 3,026925.
Координаты точки Х находим совместным решением уравнений таких окружностей.
Поместим квадрат АВСД в прямоугольную систему координат точкой А в начало, стороной АД по оси Ох.
Точка А (0; 0), точка С (1; 1).
Уравнение окружности с центром в точке А:
х² + у² = 5.
Уравнение окружности с центром в точке С:
(х - 1)² + (у - 1)² = 7.
Решаем систему:
Раскроем скобки:
Подставим вместо х² + у² число 5 и получим:
-2х - 2у = 0 или у = - х.
Это говорит о том, что точка Х лежит на прямой у = -х.
Подставим это свойство в первое уравнение:
х² + (-х)² = 5,
2х² = 5,
х = +-√(5/2) ≈ +- 1,5811388. Тогда у = -+ 1,5811388.
Имеем две точки, где может находиться точка Х:
Х((-√(5/2)); √(5/2)) и Х₁((√(5/2)); -√(5/2)).
Имеем и 2 расстояния от точки Х до точки В.
Расстояние между точками. d = √((х2 - х1)² + (у2 - у1 )²).
BХ = 1,684554,
BХ1 = 3,026925.
Пошаговое объяснение:
Одно число - х
Второе число - у
х- у= 4 ( 1 )
44 % = 44/100 = 11/75
11/75 и 3/7 приведем к одному знаменателю
НОК ( 75; 7) = 5*5*3*7= 525
11/75 = 77/525
3/75= 225/525
поскольку х - большее число , то меньшая его часть будет равна большей части меньшего числа , значит
77/525х= 225/525у
х= 225/525у : 77/225 = 225/525у * 225/77 = 225/77 у= 2 71/77 у
подставим это значение в первое уравнение
2 71/77 у - у = 4
1 71 /77 у= 4
у= 4 : 1 71 /77 = 4 * 77/148= 37*4=148 - меньшее число
х -148 = 4
х= 4+148 = 152 - большее число
ответ : 148 и 152