Назовём десятерых, о которых идёт речь в задаче, знатоками, а остальных членов кружка ¾ дружками. Будем говорить, что знаток портит пару дружков, если он не знает никого из этой пары. По условию каждый знаток знает более 50/3, то есть не меньше 17 дружков. Значит, он незнаком самое большее с 8 дружками и может испортить максимум 8×7/2 = 28 пар дружков. Стало быть, вместе все 10 знатоков могут испортить максимум 280 пар дружков, а всего пар дружков ¾ 25×24/2 = 300. Поэтому найдется неиспорченная пара дружков (и даже не меньше 20 таких пар), что и требовалось доказать.
Назовём десятерых, о которых идёт речь в задаче, знатоками, а остальных членов кружка ¾ дружками. Будем говорить, что знаток портит пару дружков, если он не знает никого из этой пары. По условию каждый знаток знает более 50/3, то есть не меньше 17 дружков. Значит, он незнаком самое большее с 8 дружками и может испортить максимум 8×7/2 = 28 пар дружков. Стало быть, вместе все 10 знатоков могут испортить максимум 280 пар дружков, а всего пар дружков ¾ 25×24/2 = 300. Поэтому найдется неиспорченная пара дружков (и даже не меньше 20 таких пар), что и требовалось доказать.
Назовём десятерых, о которых идёт речь в задаче, знатоками, а остальных членов кружка ¾ дружками. Будем говорить, что знаток портит пару дружков, если он не знает никого из этой пары. По условию каждый знаток знает более 50/3, то есть не меньше 17 дружков. Значит, он незнаком самое большее с 8 дружками и может испортить максимум 8×7/2 = 28 пар дружков. Стало быть, вместе все 10 знатоков могут испортить максимум 280 пар дружков, а всего пар дружков ¾ 25×24/2 = 300. Поэтому найдется неиспорченная пара дружков (и даже не меньше 20 таких пар), что и требовалось доказать.
Назовём десятерых, о которых идёт речь в задаче, знатоками, а остальных членов кружка ¾ дружками. Будем говорить, что знаток портит пару дружков, если он не знает никого из этой пары. По условию каждый знаток знает более 50/3, то есть не меньше 17 дружков. Значит, он незнаком самое большее с 8 дружками и может испортить максимум 8×7/2 = 28 пар дружков. Стало быть, вместе все 10 знатоков могут испортить максимум 280 пар дружков, а всего пар дружков ¾ 25×24/2 = 300. Поэтому найдется неиспорченная пара дружков (и даже не меньше 20 таких пар), что и требовалось доказать.