жили два брата. одного звали числитель, а другого знаменатель. дружба у них была крепкая. когда они были вместе, их все звали дробью. жить один без другого они не могли. однажды пошли они в лес. в лесу были две дорожки. одна вела направо, а другая налево. и разошлись братья по разным тропинкам, но договорились встретиться у ручья. по дороге числитель встретил старика, которого звали деление. они разговорились:
- дай мне воды, внучок, я тебя . а за это я тебе путь покажу легче.
дал числитель воды делению. а старик так и сделал. он разделил числитель. то же самое произошло и со знаменателем. вскоре они встретились у ручья и соединились. старик не обманул, он показал правило сокращения дроби и жить братьям стало интереснее и легче.
сказка о дробях № 2
жила-была королева дробей единица. и жили в ее стране разные дроби. единица решила, что каждая дробь, у которой числитель меньше знаменателя будет называться правильной дробью, а у которой числитель больше или равен знаменателю – неправильной. и еще увидела она, что есть дроби, у которых числитель и знаменатель можно разделить на одно и то же число. и назвала анна это действие сокращением дробей. так и правит королева дробей своей страной.
ответ:
пошаговое объяснение: сказка о дробях № 1
жили два брата. одного звали числитель, а другого знаменатель. дружба у них была крепкая. когда они были вместе, их все звали дробью. жить один без другого они не могли. однажды пошли они в лес. в лесу были две дорожки. одна вела направо, а другая налево. и разошлись братья по разным тропинкам, но договорились встретиться у ручья. по дороге числитель встретил старика, которого звали деление. они разговорились:
- дай мне воды, внучок, я тебя . а за это я тебе путь покажу легче.
дал числитель воды делению. а старик так и сделал. он разделил числитель. то же самое произошло и со знаменателем. вскоре они встретились у ручья и соединились. старик не обманул, он показал правило сокращения дроби и жить братьям стало интереснее и легче.
сказка о дробях № 2
жила-была королева дробей единица. и жили в ее стране разные дроби. единица решила, что каждая дробь, у которой числитель меньше знаменателя будет называться правильной дробью, а у которой числитель больше или равен знаменателю – неправильной. и еще увидела она, что есть дроби, у которых числитель и знаменатель можно разделить на одно и то же число. и назвала анна это действие сокращением дробей. так и правит королева дробей своей страной.
По первому условию:
a₁ + a₁ + 4d = 4,
2a₁ + 4d = 4.
a₁ + 2d = 2. Отсюда a₁ = 2 - 2d.
По второму условию:
a₁ * (a₁ + 4d) = -32.
Заменим a₁ на 2 - 2d:
(2 - 2d)(2 - 2d + 4d) = -32,
(2 - 2d)(2 + 2d) = -32,
4 - 4d² = -32 сократим на 4,
1 - d² = -8,
d² = 1 + 8 = 9,
d = √9 = +-3. Примем первое значение d = 3.
a₁ = 2 - 2*3 = 2 - 6 = -4,
a₅ = a₁ + 4d = -4 + 4*3 = -4 + 12 = 8.
Проверяем условие: а₁ + а₅ = -4 + 8 = 4,
а₁*а₅ = (-4)*8 = -32.
Примем второе значение d = -3.
a₁ = 2 - 2*(-3) = 2 + 6 = 8,
a₅ = a₁ + 4d = 8 + 4*(-3) = 8 - 12 = -4.
Проверяем условие: а₁ + а₅ = 8 - 4 = 4,
а₁*а₅ = 8*(-4) = -32.
Оба варианта верны, значит задача имеет два варианта ответа.
Третий член прогрессии равен:
по первому варианту:
a₃ = a₁ + d(3 - 1) = a₁ + 2d
а₃ = -4 + 2*3 = -4 + 6 = 2.
По второму варианту:
а₃ = 8 +2*(-3) = 8 - 6 = 2.
В обоих вариантах значения третьего члена прогрессии совпадают.