В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
arzuaes
arzuaes
17.11.2020 08:14 •  Математика

203. Вычислите периметр восьмиугольника. 5 класс​


203. Вычислите периметр восьмиугольника. 5 класс​

Показать ответ
Ответ:
krasava5vovan
krasava5vovan
07.07.2021 14:44
1) Так как прямоугольник с диагональю 6 поместили в окружность, то минимальный радиус этой окружности будет тогда, когда этот прямоугольник будет вписан в окружность. Значит диаметр этой окружности равен 6.
Из всех прямоугольников, в которые можно поместить окружность, наименьшим будет тот, у которого все стороны равны диаметру этой окружности( действительно, все другие прямоугольники, подходящие для этого, могут быть получены "передвижением" сторон между прямых, содержащих две противоположные стороны).
Так как у окружности диаметр равен 6, то сторона искомого прямоугольника( в нашем случае, по доказанному ранее, квадрата) равна 2*3=6, откуда P=6*4=24.
2) Максимальный диаметр окружности, которую можно поместить в прямоугольник, равен меньшей из его сторон. В нашем случае получаем, что диаметр равен 4.
Какое максимальное количество точек может быть на окружности? Их может быть бесконечно много. Так как по условию задания получился многоугольник, то точек не меньше 3.
И чем больше точек отмечается, тем больше многоугольник по периметру приближается к длине окружности(по сути, наш многоугольник состоит из хорд, из каждого конца которой выходит лишь одна хорда. При этом длина хорды не больше длины дуги, которую она стягивает. При количестве точек, стремящимся к бесконечности, длины каждой хорды будет немногим меньше длины дуги, которую, она стягивает, а в сумме все дуги и дадут длину окружности.) Значит искомое значение равно
2 × \pi × 2= 4\pi
0,0(0 оценок)
Ответ:
Дания29
Дания29
28.03.2022 02:36
"Хорошее" семизначное число -  цифры, входящие в его запись, повторяются в ней хотя бы дважды

Возможные варианты:

1)  все число состоит из одинаковых цифр
1111111, 2222222, ..., 9999999
Всего 9 чисел.

2) В записи числа участвуют    a,a,a,a,a,b,b, причем a и b - различны.
Пусть первая цифра b занимает в числе последовательно позицию K от первой до шестой, а вторая цифра b располагается за ней, занимая позицию от (K+1) до 7.
Тогда возможное количество таких расположений цифр в семизначном числе
6 + 5 + 4 + 3 + 2 + 1 = 21
Остальные позиции в числе занимают цифры a.
Число a может быть любой цифрой от 1 до 9 (9 вариантов), цифра b может быть любой цифрой, кроме занятой a (8 вариантов)
Таким образом, чисел вида 5+2 будет
21 * 8 * 9 = 1512

3) В записи числа участвуют    a,a,a,a,b,b,b, причем a и b - различны
Пусть первая цифра b занимает в числе последовательно позицию K от первой до пятой, вторая цифра b располагается за ней, занимая позицию N от (K+1) до шестой, а третья цифра b располагается за второй, занимая позицию от (N+1) до 7.
Тогда возможное количество таких расположений цифр b в семизначном числе
(b)    5 + 4 + 3 + 2 + 1 + 
(ab)      + 4 + 3 + 2 + 1 +
(aab)           + 3 + 2 + 1 +
(aaab***)                 + 2 + 1 +
(bbb)                     + 1 =   35
Число a может быть любой цифрой от 1 до 9 (9 вариантов), цифра b может быть любой цифрой, кроме занятой a (8 вариантов)
Таким образом, чисел вида 4+3 будет
35 * 8 * 9 = 2520

4) В записи числа участвуют    b,b,b,a,a,d,d, причем a,b и d - различны
Возможное количество расположений цифр b в числе - 35 (см п.3).
На четырех оставшихся местах каждого числа цифры a и d могут располагаться так:
aadd   adad   adda   daad   dada   ddaa  -  всего 6 вариантов.

Число b может быть любой цифрой от 1 до 9 (9 вариантов), цифра a может быть любой цифрой, кроме занятой b (8 вариантов), цифра d может быть любой цифрой, кроме занятой b и a (7 вариантов), 
Таким образом, чисел вида 3+2+2 будет
35 * 6 * 7 * 8 * 9 = 105840

Итого "хороших" семизначных чисел без нуля в записи
9 + 1512 + 2520 + 105840 = 109881
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота