Подобные члены. Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.Например, 3x2 и 4x2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.
Разложение на множители. Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x).Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.Запомните и соблюдайте порядок выполнения операций во избежание ошибок.
Выберите ту пару чисел, которая является решением уравнения: 3х – 2у = 4 А) ( -2; 1 ) В) ( -2; -5 ) С) ( 3; 0 )
В записи координаты точки на первом месте записана абсцисса х, на втором месте - ордината у. N(x; y). Чтобы проверить является ли пара чисел решением уравнения, надо значения х и у подставить в уравнение 3х – 2у = 4 и проверить его правильность.
А) (- 2; 1); x = - 2; y = 1;
3 * (- 2) - 2 * 1 = 4;
- 6 - 2 = 4;
- 8 = 4 - не верное равенство, значит данная пара чисел не является решением данного уравнения.
В) (- 2; - 5); x = - 2; y = - 5;
3 * (- 2) - 2 * (- 5) = 4;
- 6 + 10 = 4;
4 = 4 - равенство верное, значит эта пара чисел является решением данного уравнения.
С) (3; 0); x = 3; y = 0;
3 * 3 - 2 * 0 = 4;
9 - 0 = 4;
9 = 4 - не верно, значит пара чисел не является решением уравнения.
Д) (2; 5); x = 2; y = 5;
3 * 2 - 4 * 5 = 4;
6 - 20 = 4;
- 14 = 4 - не верно, пара чисел не является решением.
Разложение на множители. Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x).Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.Запомните и соблюдайте порядок выполнения операций во избежание ошибок.
Журнал
Стикеры ВК
Подготовка к ЕГЭ
Задать во Войти
АнонимМатематика13 апреля 02:40
Выберите ту пару чисел, которая является решением уравнения: 3х – 2у = 4 А) ( -2; 1 ) В) ( -2; -5 ) С) ( 3; 0 )
В записи координаты точки на первом месте записана абсцисса х, на втором месте - ордината у. N(x; y). Чтобы проверить является ли пара чисел решением уравнения, надо значения х и у подставить в уравнение 3х – 2у = 4 и проверить его правильность.
А) (- 2; 1); x = - 2; y = 1;
3 * (- 2) - 2 * 1 = 4;
- 6 - 2 = 4;
- 8 = 4 - не верное равенство, значит данная пара чисел не является решением данного уравнения.
В) (- 2; - 5); x = - 2; y = - 5;
3 * (- 2) - 2 * (- 5) = 4;
- 6 + 10 = 4;
4 = 4 - равенство верное, значит эта пара чисел является решением данного уравнения.
С) (3; 0); x = 3; y = 0;
3 * 3 - 2 * 0 = 4;
9 - 0 = 4;
9 = 4 - не верно, значит пара чисел не является решением уравнения.
Д) (2; 5); x = 2; y = 5;
3 * 2 - 4 * 5 = 4;
6 - 20 = 4;
- 14 = 4 - не верно, пара чисел не является решением.
Правильное решение под буквой В.
ответ. В.