Пусть x, y – искомые трёхзначные числа. По условию 7xy = 1000x + y.
Первый Разделим обе части равенства на x: 7y = 1000 + y/x. Число y/x положительно и меньше 10, так как y ≤ 999, x ≥ 100. Поэтому 1000 < 7y < 1010. Деля это неравенство на 7, получаем 1426/7 < y < 1442/7. Так как y – целое число, y = 143 или 144. Подставляя y = 143 в равенство, получаем 7x·143 = 1000x + 143. Решая это уравнение, находим x = 143. Если y = 144, то аналогичное уравнение даёт x = 18, а это число – не трёхзначное.
Второй Перепишем равенство в виде 1000x = (7x – 1)y. Числа x и 7x – 1 взаимно просты. Значит, 7x – 1 – делитель числа 1000. Но 7x – 1 ≥ 7·100 – 1 = 699, поэтому 7x – 1 = 1000, откуда x = 143. Подставляя в исходное уравнение, находим y = 143. ответ 143 и 143.
Первый случай. Пусть x, y — искомые трехзначные числа. Если к числу x приписать три нуля, то получится число 1000x, если приписать y, то получится 1000x + y. Итак, ученик написал число 1000x + y. По условию это число в семь раз больше, чем x . y. Получается равенство 7x . y = 1000x + y. Разделим обе части равенства на x: 7y = 1000 + y / x Число [t]y / x положительно и меньше 10, так как y999, x100. Поэтому 1000 < 7y < 1010. Деля это неравенство на 7, получаем 142 < y < 144. Так как y — целое число, y — либо 143, либо 144. Пусть y = 143. Подставляя это значение y в равенство, получаем: 7x . 143 = 1000x + 143. Решая это уравнение, находим x = 143. Если y = 144, то аналогичное уравнение дает x = 18, что не годится, потому что x — число из трех цифр. Второй случай. Перепишем равенство в виде 1000x = (7x - 1)y. Нетрудно видеть, что x и 7x - 1 не имеют общих делителей, отличных от 1 и -1. Действительно, если d — общий делитель чисел x и 7x - 1, то d является делителем числа 7x, а значит, и делителем числа 1 = 7x - (7x - 1). Но 1 делится только на 1 и -1. Итак, число 7x - 1 — делитель произведения 1000 . x и взаимно просто со вторым множителем. Тогда, по известной теореме, число 7x - 1 — делитель числа 1000. Но 7x - 17 . 100 - 1 = 699, поэтому 7x - 1 = 1000 (единственный делитель числа 1000, больше либо равный 699 — это само число 1000), откуда x = 143. Подставляя x = 143 в исходное уравнение, находим y = 143.
Пусть x, y – искомые трёхзначные числа. По условию 7xy = 1000x + y.
Первый Разделим обе части равенства на x: 7y = 1000 + y/x. Число y/x положительно и меньше 10, так как y ≤ 999, x ≥ 100. Поэтому 1000 < 7y < 1010. Деля это неравенство на 7, получаем 1426/7 < y < 1442/7. Так как y – целое число, y = 143 или 144.
Подставляя y = 143 в равенство, получаем 7x·143 = 1000x + 143. Решая это уравнение, находим x = 143.
Если y = 144, то аналогичное уравнение даёт x = 18, а это число – не трёхзначное.
Второй Перепишем равенство в виде 1000x = (7x – 1)y. Числа x и 7x – 1 взаимно просты. Значит, 7x – 1 – делитель числа 1000. Но
7x – 1 ≥ 7·100 – 1 = 699, поэтому 7x – 1 = 1000, откуда x = 143. Подставляя в исходное уравнение, находим y = 143.
ответ
143 и 143.
Первый случай.
Пусть x, y — искомые трехзначные числа. Если к числу x приписать три нуля, то получится число 1000x, если приписать y, то получится 1000x + y.
Итак, ученик написал число 1000x + y. По условию это число в семь раз больше, чем x . y. Получается равенство
7x . y = 1000x + y.
Разделим обе части равенства на x:
7y = 1000 + y / x
Число [t]y / x положительно и меньше 10, так как y999, x100. Поэтому
1000 < 7y < 1010.
Деля это неравенство на 7, получаем
142 < y < 144.
Так как y — целое число, y — либо 143, либо 144. Пусть y = 143. Подставляя это значение y в равенство, получаем:
7x . 143 = 1000x + 143.
Решая это уравнение, находим x = 143. Если y = 144, то аналогичное уравнение дает x = 18, что не годится, потому что x — число из трех цифр.
Второй случай. Перепишем равенство в виде 1000x = (7x - 1)y. Нетрудно видеть, что x и 7x - 1 не имеют общих делителей, отличных от 1 и -1. Действительно, если d — общий делитель чисел x и 7x - 1, то d является делителем числа 7x, а значит, и делителем числа 1 = 7x - (7x - 1). Но 1 делится только на 1 и -1.
Итак, число 7x - 1 — делитель произведения 1000 . x и взаимно просто со вторым множителем. Тогда, по известной теореме, число 7x - 1 — делитель числа 1000. Но
7x - 17 . 100 - 1 = 699,
поэтому 7x - 1 = 1000 (единственный делитель числа 1000, больше либо равный 699 — это само число 1000), откуда x = 143. Подставляя x = 143 в исходное уравнение, находим y = 143.