площадь круга описывающий правильный шестиугольник равна S=πR²,
площадь вписанного круга равна s=πr².
R- описанной окружности равен стороне вписанного шестиугольника: R=a, чтобы вычислить радиус вписанной окружности, соедините две смежные вершины шестиугольника с центром окружности. Получили равносторонний треугольник , в котором высота, опущенная из вершины, являющейся центром окружностей, на сторону шестиугольника является радиусом вписанной окружности.Вычислим этот радиус.
r²=a²-(a/2)²= a²-a²/4=a²·3/4=( a√3)/2 или r=a·sin60=(a·√3)/2
площадь кольца равна разности площади круга описанной окружности и площади круга вписанной окружности: πa²-π·((a√3)/2)²= πa²-π·3a²/4=π(a²-3a²/4)=πa²/4
Відповідь:
14 часов
Покрокове пояснення:
Для решения задачи сперва нужно определить количество времени за которое бассейн наполняется через 2 трубы.
Для этого находим продуктивность работы каждой из труб за 1 час.
Поскольку вся работа равна 1, получим.
1/12 продуктивность работы первой трубы за час.
1/24 продуктивность работы второй трубы за час.
1/12+1/24=3/4=1/8. Продуктивность работы двух труб за час вместе.
Находим количество работы для второй трубы за 9 часов.
Получим.
1/24*9=3/8.
Находим количество работы выполненное первой трубой.
1-3/8=5/8.
Находим период работы двух труб вместе.
5/8 / 1/8=5/8*8/1=40/8=5 часов.
Находим период наполнения.
5+9=14 часов.
площадь круга описывающий правильный шестиугольник равна S=πR²,
площадь вписанного круга равна s=πr².
R- описанной окружности равен стороне вписанного шестиугольника: R=a, чтобы вычислить радиус вписанной окружности, соедините две смежные вершины шестиугольника с центром окружности. Получили равносторонний треугольник , в котором высота, опущенная из вершины, являющейся центром окружностей, на сторону шестиугольника является радиусом вписанной окружности.Вычислим этот радиус.
r²=a²-(a/2)²= a²-a²/4=a²·3/4=( a√3)/2 или r=a·sin60=(a·√3)/2
площадь кольца равна разности площади круга описанной окружности и площади круга вписанной окружности: πa²-π·((a√3)/2)²= πa²-π·3a²/4=π(a²-3a²/4)=πa²/4
ответ:πa²/4
Подробнее - на -
Пошаговое объяснение: