Решать подобные задачи использование диаграмм. Очертим три окружности, означающие драмкружок, спортсменов и хор. Области пересечений окружностей означают одновременную принадлежность к двум или трем категориям занятий. Начнем заполнение. 1. Всем трем областям соответствует условие "3 спортсмена посещают и драмкружок, и хор)". Ставим число 3 (помечено красным). 2. В драмкружке 10 ребят из хора. Следовательно, в области пересечения "Драмкружок+хор" должно находиться число 10. Но часть этой области пересекается с областью, где находятся все три категории занятий, поэтому из 10 вычитаем стоящую в этой области красную тройку и получаем число 7 (помечено синим). Т.е. посещают драмкружок и хор, но не занимаются спортом 7 человек. 3. В хоре 6 спортсменов. Рассуждая аналогично (2) получаем синее число 3. 4. В драмкружке 8 спортсменов. Получаем синее число 5. 5. 27 ребят занимаются в драмкружке. Вычитаем из этого количества число ребят, принадлежащее общим областям 7+5+3=15 и получаем 27-15=12 человек, которые занимаются только в драмкружке. 6. Аналогично получаем 11 спортсменов и 19 участников хора. 7. Всего 70 учеников. Вычитая количество учеников, которые чем-либо заняты, определяем, что 10 человек не заняты ничем. 8. Только спортом, как видно из рисунка, занимаются 11 человек
1) 0,108
2) 29410
3)0,0286
4)0,25
5)0,6
6) 130
(4-2,6)*4,3+1,08:1,2=1,4*4,3+0,9=6,02+0,9=6,92
Уравнение не дописано, поэтому не знаю
1. Найдем скорость лодки по течению реки, если скорость течения 1,7 километров в час, а собственная скорость лодки 19,8 километров в час:
1,7 + 19,8 = 21,5 (км/ч).
2. Определим скорость лодки против течения:
19,8 - 1,7 = 18,1 (км/ч).
3. Узнаем сколько километров лодка проплыла по течению за 1,4 часа:
21,5 * 1,4 = 30,1 (км).
4. Найдем сколько километров проплыла лодка против течения за 2,2 часа:
18,1 * 2,2 = 39,82 (км)
5. Определим сколько километров проплыла лодка:
30,1 + 39,82 = 69,92 (км).
ответ: лодка проплыла 69,92 километров.
Перенесение запятой на одну единицу вправо говорит об увеличении дроби в 10 раз.
Возьмем изначальное число за х.
Когда перенесли запятую, это число увеличилось в 10 раз и получилась новая дробь 10х.
Составим уравнение:
10х-х=14,31.
9х=14,31.
х=1,59.
Итак, изначально была дробь 1,59. Затем перенесли запятую вправо, получилась дробь 15,9.
15,9-1,59=14,31.
ответ: 1,59.
Очертим три окружности, означающие драмкружок, спортсменов и хор. Области пересечений окружностей означают одновременную принадлежность к двум или трем категориям занятий. Начнем заполнение.
1. Всем трем областям соответствует условие "3 спортсмена посещают и драмкружок, и хор)". Ставим число 3 (помечено красным).
2. В драмкружке 10 ребят из хора. Следовательно, в области пересечения "Драмкружок+хор" должно находиться число 10. Но часть этой области пересекается с областью, где находятся все три категории занятий, поэтому из 10 вычитаем стоящую в этой области красную тройку и получаем число 7 (помечено синим). Т.е. посещают драмкружок и хор, но не занимаются спортом 7 человек.
3. В хоре 6 спортсменов. Рассуждая аналогично (2) получаем синее число 3.
4. В драмкружке 8 спортсменов. Получаем синее число 5.
5. 27 ребят занимаются в драмкружке. Вычитаем из этого количества число ребят, принадлежащее общим областям 7+5+3=15 и получаем 27-15=12 человек, которые занимаются только в драмкружке.
6. Аналогично получаем 11 спортсменов и 19 участников хора.
7. Всего 70 учеников. Вычитая количество учеников, которые чем-либо заняты, определяем, что 10 человек не заняты ничем.
8. Только спортом, как видно из рисунка, занимаются 11 человек