2пешехода вышли из населенного пункта в одном направлении, причём первый пешеход вышел на 2 часа раньше второго. скорость первого пешехода 4,5км/ч, второго 3/4км/ч . какое расстояние будет между через 1,5 часа после выхода 2 пешехода
Классическое определение гласит, что “два выражения, значения которых равны при любых значениях переменных, называются тождественно равными, а тождество – это равенство, верное при любых значениях переменных”. Исходя из этого определения, в приведенных выражениях определены такие тождества: 1) ab + 3c = 6) 3c + ab ( перестановка слагаемых); 2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок); 3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя); 4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
Классическое определение гласит, что “два выражения, значения которых равны при любых значениях переменных, называются тождественно равными, а тождество – это равенство, верное при любых значениях переменных”. Исходя из этого определения, в приведенных выражениях определены такие тождества: 1) ab + 3c = 6) 3c + ab ( перестановка слагаемых); 2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок); 3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя); 4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
1) ab + 3c = 6) 3c + ab ( перестановка слагаемых);
2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок);
3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя);
4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
1) ab + 3c = 6) 3c + ab ( перестановка слагаемых);
2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок);
3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя);
4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).