На доске были записаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся получилась 2017. Какое число стёрли?
РЕШЕНИЕ: Найдем сумму 10 чисел: х+х+1+х+2+х+3+х+4+х+5+х+6+х+7+х+8+х+9=10х+45
Если вычеркнули наименьшее число, то сумма стала 9х+45, если вычеркнули наиболее число, то сумма стала 9х+36.
Значит, число 2017 с одной стороны не меньше 9х+36, с другой стороны не больше 9х+45.
Пошаговое объяснение:
1) 16х · (-8/15b) · 45/64k=-6 xbk
2) -7a · 3b · (-6c)=126 abc
3) 10m · (-1,7) n=-17 mn
4) 3,6 · (-5x)=-18 x
5) -3m · (-2,1)=6.3 m
6) -0,2t · (-5a) · (-b)=-1 tab
1) -1,25 · (-3,47) · (-8)=-1.25*(-8)*(-3.47)=10*(-3.47)=-34.7
2) -0,001 · (-54,8) · 50 · (-2)=-2*50*(-54.8)*(-0.001)=548*(-0.001)=-5.48
3) 9/16 · 11/35 · (-32) · (-70)=(9/16*(-32))*(11/35*(-70))=-18*(-22)=396
4) 4,8 · (-2 1/6) · (-5/24) · (-6/13)=((-2 1/6)*(-6/13))*(-5/24*4.8)=((-13/6)*(-6/13))*(-5/24*24/5)=1*(-1)=-1
1) 200m · (-0,4n)=-80mn=-80*(-0.25)*(0.2)= 4
2) -1/3m · (-3/4n) · 20p=5mnp=5*(-3/20)*4/9*(-30)=10
5/Задание № 3:
На доске были записаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся получилась 2017. Какое число стёрли?
РЕШЕНИЕ: Найдем сумму 10 чисел: х+х+1+х+2+х+3+х+4+х+5+х+6+х+7+х+8+х+9=10х+45
Если вычеркнули наименьшее число, то сумма стала 9х+45, если вычеркнули наиболее число, то сумма стала 9х+36.
Значит, число 2017 с одной стороны не меньше 9х+36, с другой стороны не больше 9х+45.
9х+36<=2017
9х<=1981
х<=220+1/9
9х+45>=2017
9х>=1972
х>=219+1/9
Значит, х=220.
Сумма 10 чисел: 10х+45=10*220+45=2245
Вычеркнутое число 2245-2017=228
ОТВЕТ: 228