Пусть одежда стоила x флоринов. За 7 месяцев работник должен получить x + 10/12 ·7 флоринов, а получил при расчете x + 2 флорина. Остается приравнять полученные выражения и получить ответ 9,2 флорина.
Отметим, что задачи 453–455 имеют арифметическое решение, основанное на подсчете платы за 1 месяц (день) не по отработанному, а по оставшемуся времени. Например, в задаче 454 работнику за оставшиеся 5 месяцев предстояло заработать 10 – 2 = 8 флоринов, значит, плата за месяц составляла 8:5 = 1,6 флорина. Тогда одежда стоила
Пусть одежда стоила x флоринов. За 7 месяцев работник должен получить x + 10/12 ·7 флоринов, а получил при расчете x + 2 флорина. Остается приравнять полученные выражения и получить ответ 9,2 флорина.
Отметим, что задачи 453–455 имеют арифметическое решение, основанное на подсчете платы за 1 месяц (день) не по отработанному, а по оставшемуся времени. Например, в задаче 454 работнику за оставшиеся 5 месяцев предстояло заработать 10 – 2 = 8 флоринов, значит, плата за месяц составляла 8:5 = 1,6 флорина. Тогда одежда стоила
1,6·7 – 2 = 9,2 (флорина).
Пошаговое объяснение:
16 см; 16,24 см.
Пошаговое объяснение:
ΔАВС - прямоугольный, т.к. в условии сказано, что катеты равны 12 см и 16 см. Пусть АВ=16 см, ВС=12 см, ∠В=90°.
Меньший угол лежит напротив меньшего катета, значит меньший ∠А. ВН - расстояние до ВС от точки Н.
АВ ⊥ ВС как катеты, АВ - проекция наклонной ВН на плоскость ΔАВС, значит и ВН ⊥ ВС по теореме о трех перпендикулярах.
АН⊥АВС. Т.к. перпендикуляр является кратчайшим расстоянием между точкой и прямой, то расстояние от т. А до прямой ВС равно АВ=16 см.
Найдем ВН по теореме Пифагора из ΔАВН:
ВН=√(2,8²+16²)=√(2,8²+16²)=√(7,84+256)=√(263,84)≈ 16,24 см.
ответ: 16 см; 16,24 см.