Последняя цифра должна быть четной чтоб делилась на 8, следовательно, последняя цифра числа 8, из 2-х значных чисел такие 78 и 88 они не делятся на 7, переходим к 3-х значным числам, 778, 788, 888 по признаку делимости на 8 подходит только 888, но оно не делится на 7 следовательно переходим к 4-х значным числам последние 3 цифры которых должны быть 8 по признаку деления на 8: 7888 и 8888 они оба не делятся на 7 переходим к 5 значным числам 77888, 78888, 87888, 88888 они не делятся на 7 переходим к 6-ти значным числам 777888, 778888, 787888, 788888, 877888, 878888, 887888, 888888 они не делятся на 7, но по признаку деления на 7: 788888 - 16 делится на 7 следовательно исходное число 7888888 ответ 7888888
S(x) = 10a + b + a + b - ab = 11a + 2b - ab = 11a + b(2 - a)
Пробуем подобрать. Двузначное число 10a+b не может начинаться с нуля, поэтому a ≠ 0.
а = 1: S(x) будет наибольшим, если b = 9, S(x) = 11*1 +9(2-1) = 20 a = 2: S(x) = 11*2 + b(2-2) = 22 при любом b. a = 3: S(x) будет наибольшим, если b минимально, т.е. равно нулю, т.к. второе слагаемое отрицательное. S(x) = 11*3 + 0*(2-3) = 33
А теперь видно, что S(x) будет максимальным при a = 9 и b = 0. Значит, х = 90.
ответ 7888888
S(x) = 10a + b + a + b - ab = 11a + 2b - ab = 11a + b(2 - a)
Пробуем подобрать. Двузначное число 10a+b не может начинаться с нуля, поэтому a ≠ 0.
а = 1: S(x) будет наибольшим, если b = 9, S(x) = 11*1 +9(2-1) = 20
a = 2: S(x) = 11*2 + b(2-2) = 22 при любом b.
a = 3: S(x) будет наибольшим, если b минимально, т.е. равно нулю, т.к. второе слагаемое отрицательное. S(x) = 11*3 + 0*(2-3) = 33
А теперь видно, что S(x) будет максимальным при a = 9 и b = 0.
Значит, х = 90.
ответ: 90