Пусть вторая труба заполняет бассейн за х часов, а первая за (х+4) часов. За 1 час каждая из них заполняет такую часть бассейна: первая: (1/(х+4)), вторая: (1/х). По условию задачи: 7*(1/(х+4)) + 2*(1/(х+4))+(1/х)) = 1. Решаем это уравнение: (7/(х+4)) + 2*((х+х+4)/(х*(х+4)) = 1. Приводим к общему знаменателю: 7х+4х+8 = х(х+4). Получаем квадратное уравнение: х² - 7х - 8 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-7)^2-4*1*(-8)=49-4*(-8)=49-(-4*8)=49-(-32)=49+32=81;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√81-(-7))/(2*1)=(9-(-7))/2=(9+7)/2=16/2=8;x_2=(-√81-(-7))/(2*1)=(-9-(-7))/2=(-9+7)/2=-2/2=-1 этот отрицательный корень отбрасываем.
ответ: первая труба может наполнить бассейн за 8+4 = 12 часов, а вторая ха 8 часов.
За 1 час каждая из них заполняет такую часть бассейна:
первая: (1/(х+4)),
вторая: (1/х).
По условию задачи:
7*(1/(х+4)) + 2*(1/(х+4))+(1/х)) = 1.
Решаем это уравнение:
(7/(х+4)) + 2*((х+х+4)/(х*(х+4)) = 1.
Приводим к общему знаменателю:
7х+4х+8 = х(х+4).
Получаем квадратное уравнение:
х² - 7х - 8 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-7)^2-4*1*(-8)=49-4*(-8)=49-(-4*8)=49-(-32)=49+32=81;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√81-(-7))/(2*1)=(9-(-7))/2=(9+7)/2=16/2=8;x_2=(-√81-(-7))/(2*1)=(-9-(-7))/2=(-9+7)/2=-2/2=-1 этот отрицательный корень отбрасываем.
ответ: первая труба может наполнить бассейн за 8+4 = 12 часов, а вторая ха 8 часов.
y=x^2-5x+6=(x-2)(x-3)
1) найти область определения функции; х∈r y∈r2) исследовать функцию на симметричность и периодичность;
непереодическая, f(x)≠-f(-x) f(x)≠ f(-x)
3)нули функции
х=0 у=0 y=0
у=6 х=2 x=3
4) асимптоты
k=lim(x-5+6/x)= ∞
асимптот нет
5) у`=2x-5=0
x=2.5(точка минимума)
y= 6.25-5*2.5+6=6.25-12.5+6=-0.25
6)у``=2
функция вогнутая на всем интервале.
7)график:
парабола, ветви вверх
вершина в (2.5; -0.25)
сам график: