3. Даны точки: 0(-5;6), T(2; -8), M(3; 6). Не выполняя построений, найдите: а) координаты точки А, симметричной точке Мотносительно оси абсцисс;
б) координаты точки В, симметричной точке 0 относительно оси ординат;
в) координаты точки С, симметричной точке Тотносительно начала координат.
Гаусс дал построение правильного 17-угольника с циркуля и линейки. Эти работы были выполнены в 1796г., когда Гауссу было около 19 лет. Тогда же Гаусс, благодаря постоянным упражнениям, достигает изумительной виртуозности в технике вычислений, составляет большие таблицы простых чисел, квадратичных вычетов и невычетов, выражает все дроби вида 1/p для р от 1 до 1000 десятичными дробями, доведя эти вычисления до полного периода, что в иных случаях требовало несколько сотен десятичных знаков.
В алгебре Гаусс занимался преимущественно основной теоремой, которой он неоднократно возвращался и дал не менее шести различных доказательств. Все они опубликованы в работах, относящихся к 1803-1817; в этих работах даются также указания относительно кубических и биквадратичных вычетов. Теоремы о биквадратичных вычетах содержатся в работах 1825-1831; эти работы чрезвычайно расширяют область теории чисел, благодаря введению целых гауссовых чисел, т. е. чисел вида a+bi, где а и b-целые числа.
В 1821-1823 Гаусс опубликовал метод наименьших квадратов. Изучение формы земной поверхности потребовало общего геометрического метода для исследования поверхностей. Выдвинутые Гауссом в этой области идеи изложены в сочинении "Общие исследования о кривых поверхностях" (1828). Теория поверхностей Гаусса содержит новую теорему о том, что гауссова кривизна (произведение кривизны главных нормальных сечений) не изменяется при изгибаниях поверхности, т. е. характеризует внутреннее ее свойство (созданная внутренняя геометрия поверхностей послужила образцом для создания n-мерной римановой геометрии).
В этой же работе Гаусс ввел криволинейные координаты произвольного вида, доказал формулу Гаусса - Бонне для геодезического многоугольника, определил полную кривизну в точке поверхности. Гаусс измерял углы треугольника, образованного тремя горными вершинами, чтобы выяснить, будет ли сумма углов указанного треугольника равна двум прямым.
Умер Гаусс 23 февраля 1855 года в Гёттингене.