3. Имеем выборку размеров пар обуви, проданных в магазине: 39, 41, 40, 41, 44, 40, 42, 41, 43, 39, 42, 41, 42, 40, 43, 41, 38, 42, 41, 43, 41, 39, 40, 40.
Составить по этим данным частотную таблицу, вычислить относительную
частоту каждого показателя, найти моду и среднее.
4. Вкладчик положил в банк сроком на 4 года 3 000 евро, под 6% годовых.
Определите:
1) Какую сумму интресса он получит через 4 года?
2) Сколько всего денег он получит через 4 года?
7 + А= 10; А=10 - 7 = 3. И наше число 993
Проверка:
327 + 993 = 1320; 1320 : 10 = 132. Условие кратности выполнено.
и число 993 - максимальное, так как при других значениях цифры А условие кратности не будет выполняться.
Подробное решение:
Пусть наше максимальное число у = 99А, где А - последняя его цифра. Разложим по разрядам: 99А = 900 + 90 + А . Условие кратности запишем как: 10*х, где х - число натурального ряда.
По условию: 327 + (900 + 90 + А) = 10*х; ⇒ 1317 + А = 10*х; ⇒
А = 10*х -1317;
Поскольку А - это цифра, то:
0 ≤ А ≤ 9; ⇒ 0 ≤10*х - 1317 ≤ 9; ⇒ 1317 ≤ 10*х ≤ 1326; 131,7 ≤ х ≤ 132, 6
Единственное целое число, удовлетворяющее этому условию, это число 132. ⇒ х = 132;
Тогда А = 10*х - 1317 = 1320 - 1317 = 3, т.е. А = 3, и наше число 993
ответ: у = 993
7 + А= 10; А=10 - 7 = 3. И наше число 993
Проверка:
327 + 993 = 1320; 1320 : 10 = 132. Условие кратности выполнено.
и число 993 - максимальное, так как при других значениях цифры А условие кратности не будет выполняться.
Подробное решение:
Пусть наше максимальное число у = 99А, где А - последняя его цифра. Разложим по разрядам: 99А = 900 + 90 + А . Условие кратности запишем как: 10*х, где х - число натурального ряда.
По условию: 327 + (900 + 90 + А) = 10*х; ⇒ 1317 + А = 10*х; ⇒
А = 10*х -1317;
Поскольку А - это цифра, то:
0 ≤ А ≤ 9; ⇒ 0 ≤10*х - 1317 ≤ 9; ⇒ 1317 ≤ 10*х ≤ 1326; 131,7 ≤ х ≤ 132, 6
Единственное целое число, удовлетворяющее этому условию, это число 132. ⇒ х = 132;
Тогда А = 10*х - 1317 = 1320 - 1317 = 3, т.е. А = 3, и наше число 993
ответ: у = 993