В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
palienkoana
palienkoana
20.01.2021 01:05 •  Математика

3. На химическом предприятии произошла авария на технологическом трубопроводе. Выброшено около 50 т аммиака, находившегося под давлением. Возник источник заражения АХОВ. Метеоусловия на момент аварии: скорость ветра 4 м/с, температура воздуха 0°С, инверсия. Разлив АХОВ на подстилающей поверхности свободный (h=0,05 м).

Определить:

1. Глубину зоны заражения аммиаком при времени от начала аварии N=1 ч.

2. Продолжительность действия источника заражения.

3. Площадь зоны фактического заражения.

Показать ответ
Ответ:
илья1598
илья1598
24.10.2020 02:44
4/5*10/11=8/11(5 и 10 сокращаются на 5), 3/7:18/19=3/7*19/18=19/42, 4/45:(12/25-4/15)+15/16*4/15=                                                                                             1)12/25-4/15=16/75                                                                                                      2)4/45*75/16=20/48=5/12                                                                                             3)5/12+15/16=20/48+45/48=65/48(приводишь к общему знаменателю 48)     4)65/48*4/15=13/36
0,0(0 оценок)
Ответ:
Anglichanin228
Anglichanin228
23.04.2021 06:16
От 3 до 51 столько же нечётных чисел, сколько от 2 до 50 – чётных. От 2 до 50 – столько же чётных чисел, сколько всего чисел от 1 до 25. Значит от 3 до 51 – 25 нечётных чисел.

И нам нужно выбрать из них разные числа на 25 вершин 25-угольника. Стало быть, мы должны будем взять все нечётные числа от 3 до 51.

Числа 3—15—5—35—7—21—3 неизбежно образуют замкнутый контур, т.е. шестиугольник, вписанный в исходный 25-угольник.

Выберем произвольное число N, кроме перечисленных, и соответствующую ему точку. Допустим, эта точка N лежит в 25-угольнике между числами 3 и 15.

Проведём лучи N—3 и N—15 (красные). Ясно, что все точки и числа находящиеся НЕ между 3 и 15 окажутся внутри тупого угла между лучами N—3 и N—15. Так же ясно, что любой луч (зелёный), находящийся внутри красного угла, пересечёт отрезок 3–15.

Среди вершин, одна будет подписана числом 45, которое делится и на 3 и на 5.

Если число 45 лежит между вершинами 3 и 15, то тогда оно без проблем (без пересечений) может быть соединено с числом 3, но вот чтобы соединиться с числом 5 – нужно будет провести луч внутри красного угла, а он пересечёт отрезок 3—15 (зелёный луч).

Аналогично можно доказать, что если число 45 лежит между вершинами 5 и 15, то тогда оно без проблем может быть соединено с числом 5, но вот чтобы соединиться с числом 3 – нужно будет провести луч, который пересечёт отрезок 5—15.

Аналогично можно доказать, что если число 45 лежит между любыми другими вершинами, то оно пересечёт какой-то из отрезков шестиугольника 3—15—5—35—7—21—3. Что показано сиреневыми и жёлтыми лучами.

Таким образом: построение заданных отрезков для числа 45, не пересекающих другие, после того, как уже построены отрезки для чисел 3, 15, 5, 35, 7 и 21 – невозможно, т.е. пересечение неизбежно возникнет.

*** Важно понимать, что все проблемы среди предлагаемых чисел создаёт именно число 45, поскольку оно является своеобразным «дублёром» числа 15, ведь и в одном и в другом содержатся тройка и пятёрка в качестве простых множителей, а значит, к этим числам должны быть проведены диагонали и от 3 и от 5.

Если взять нечётные числа от 3 до 43 (всего 21 число), то их совершенно спокойно можно расположить на 21-угольнике по тем же принципам без пересечений. Что показано на втором чертеже.

И даже если взять все нечётные числа от 3 до 51 за исключением 45 (всего 24 числа), то их совершенно спокойно можно расположить на 24-угольнике по тем же принципам без пересечений. Что показано на третьем чертеже.

Вершины выпуклого 25-угольника занумерованы различными нечётными числами от 3 до 51 (номера могут ид
Вершины выпуклого 25-угольника занумерованы различными нечётными числами от 3 до 51 (номера могут ид
Вершины выпуклого 25-угольника занумерованы различными нечётными числами от 3 до 51 (номера могут ид
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота