3.Учитель так сформулировал задание к следующему упражнению: «Сравните суммы в первом столбце, разности во втором столбце и, не вычисляя, поставьте знаки «>»,«<:» или « = »:
45+3 * 45+5 42 - 2 * 45 - 2
58+20 * 56+20 63 - 60 * 67 - 60
Проверьте себя вычислением». Дети рассуждали: «Слева записана сумма чисел 45 и 3, справа записана сумма чисел 45 и 5. Первые слагаемые этих сумм одинаковые, второе слагаемое суммы слева меньше второго слагаемого суммы справа, значит, сумма 45+3 будет меньше суммы 45+5. Проверим: 45+3=48, 45+5=50, 48<50». Аналогично рассуждают учащиеся, выполняя другие заданий этого упражнения.
Какие знания использовали учащиеся при сравнении этих выражений? Какие еще знания могут использовать дети при сравнении выражений? Приведите примеры.
Уравнение y = kx - 573 при разных k задаёт все невертикальные прямые, проходящие через точку (0, -573). Очевидно, графики будут иметь две точки пересечения, если прямая лежит между касательными к параболе.
Найдём, при каких k прямая касается параболы. Уравнение kx - 573 = x^2 должно иметь один корень. Приравниваем нулю дискриминант и находим два значения k:
x^2 - kx + 573 = 0
D = k^2 - 4 * 573 = 0
k = +- 2 * sqrt(573)
Два корня будет, если k < -2 * sqrt(573) или k > 2 * sqrt(573)
Точка пересечения с осью абсцисс находится по формуле x0 = -m/k = 573/k. Учитывая ограничения на k, -sqrt(573)/k < x0 < sqrt(573)/2. Поскольку 121 = 11^2 < 573/4 < 12^2 = 144, наибольшее целое значение x0 равно 11.
v₁ = 56,4 км/ч 1) К моменту старта легковой машины
t₁ = 1 ч автобус проехал: S₁ = v₁t₁ = 56,4 (км)
t₂ = 2 ч 2) Скорость сближения легковой машины
S₂ = 10 км и автобуса: v = v₂ - v₁ = v₂ - 56,4 (км/ч)
3) Расстояние, которое нужно было
Найти: преодолеть легковой машине, чтобы
v₂ - ? догнать автобус и перегнать его на 10 км
со скоростью сближения v = v₂ - 56,4 км/ч:
S = S₁+S₂ = 56,4+10 = 66,4 км
Тогда: S = vt₂ => 66,4 = (v₂ - 56,4)*2
66,4 = 2v₂ - 112,8
2v₂ = 179,2
v₂ = 89,6 (км/ч)
ответ: скорость легковой машины 89,6 км/ч