По чертежу (рис. 1) мы замечаем, что AM || CH, но для полного убеждения, составим функции прямых по формуле y = kx + m и решим систему уравнений.
Возьмём две любые точки (желательно брать такие точки, если они есть, чтобы аргумент (х) был равен 0; тогда пропадёт коэффицент k и найти m будет легче) для AM, например, (0; 4) и (-2; 3). Составляем таблицу:
Теперь данные из таблицы подставляем к линейной функции вида
y = kx + m:
4 = k0 + m
4 = m ⇒ y = kx + 4
Теперь, находим коэффицент k:
, на 0 делить нельзя, поэтому берем другие точки
Получаем линейную функцию y = 0,5x + 4
Аналогично действуем для второй прямой
1) Таблица:
2) Подставляем значения в y = kx + m:
-1 = k0 + m
-1 = m ⇒ y = kx - 1
3) Находим k:
Так как прямые параллельны, то k будет одинаковый (можно проверить):
⇒ y = 0,5x - 1
Наконец, составляем систему уравнений
Как видим, x и y обратились в 0, а значит, система не имеет решений и прямые не имеют общих точек.
ГАИ:Государственная автомобильная инспекция
ООО: общество с ограниченной ответственностью
ТЮЗ: театр юного зрителя
ГЭС: гидро электро станция
МГИМО: Московский государственный институт международных отношений
ЦРУ:Центральное разведывательное управление
ФБР:федеральное бюро расследований
ФСБ: федеральная служба безопасности
ООН: Организация Объединённых Наций
МИД: Министерство иностранных дел
ЦИК: Центральная избирательная комиссия
КБ: конструкторское бюро
НИИ: научно-исследовательский институт
США: Соединенные Штаты Америки
КНР:Китайская Народная Республика
ОМОН: Отряд милиции особого назначения
ВУЗ: Высшее учебное заведение (то, куда ты не попадешь с такими вопросами, ладно, шучу.)
Добра;)
По чертежу (рис. 1) мы замечаем, что AM || CH, но для полного убеждения, составим функции прямых по формуле y = kx + m и решим систему уравнений.
Возьмём две любые точки (желательно брать такие точки, если они есть, чтобы аргумент (х) был равен 0; тогда пропадёт коэффицент k и найти m будет легче) для AM, например, (0; 4) и (-2; 3). Составляем таблицу:
Теперь данные из таблицы подставляем к линейной функции вида
y = kx + m:
4 = k0 + m
4 = m ⇒ y = kx + 4
Теперь, находим коэффицент k:
, на 0 делить нельзя, поэтому берем другие точки
Получаем линейную функцию y = 0,5x + 4
Аналогично действуем для второй прямой
1) Таблица:
2) Подставляем значения в y = kx + m:
-1 = k0 + m
-1 = m ⇒ y = kx - 1
3) Находим k:
Так как прямые параллельны, то k будет одинаковый (можно проверить):
⇒ y = 0,5x - 1
Наконец, составляем систему уравнений
Как видим, x и y обратились в 0, а значит, система не имеет решений и прямые не имеют общих точек.