(32. При каких значениях у.
а) трехчлен у2 – 11y +31 принимает значение 1?
б) значения многочленов у? – бу — 3 и 2y — 5 равны?
в) значения двучлена 7y +1 равны значениям трехчлена 3у2 - 2y + 1?
г) значения трехчлена – 2у=+5у +6 равны значениям двучлена 4у2 +5у?
Очень
Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю. Итак, чтобы сравнить две дроби с разными знаменателями, нужно:
1. Привести дроби к общему знаменателю;
2. Сравнить полученные дроби с одинаковыми знаменателями.
Правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.
Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 ( Например, число 9 можно представить как дробь 9/1 и т.д.)
Осевым сечением куба будет прямоугольник, одна сторона которого равна длине ребра, а другая - диагонали грани. Если ребро известно и равно а. То диагональ грани будет одновременно гипотенузой равностороннего прямоугольного треугольника, катеты которого - это два смежных ребра куба или две стороны квадрата грани. Отсюда диагональ (гипотенузу) можно вычислить по теореме Пифагора или отношением длина ребра а к синусу (или косинусу) 45град (половины прямого угла). Синус 45град равен половине кв. корня из 2, или 0.707. Поэтому диагональ b = a/0.707. И площадь диагонального сечения квадрата:
S = а*b = (а^2)/0.707
(где а^2 - это а в квадрате, или во второй степени).