В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Marinet111
Marinet111
19.10.2021 00:16 •  Математика

330. Докажите тождество: 1) 2,05 : -4,8 +
55
12 + |-89,06] – 101;
2) -17,6) - 3,5 - 154 0 + 1-196, 4 – 53.

помагите заранее

Показать ответ
Ответ:
vika160805v
vika160805v
30.11.2022 14:44
Пусть а - сторона квадрата.
Тогда S = a^2 - его площадь.

а + 20% = а + 20•а/100 = 1,2 • а - увеличенная на 20% сторона квадрата.
Sув. = 1,2• а • 1,2 • а = 1,44а^2 - площадь увеличенного квадрата

Оставим пропорцию
S - 100%
(Sув. - S) - x
Иначе говоря
а^2 - 100%
(1,44а^2 - а^2) - x

а^2 - 100%
0,44а^2 - х

х = 0,44а^2 • 100 / а^2 = 44%

ответ: 44%.

Проверка:
Пусть сторона квадрата 2 см.
Тогда 2•2 = 4 кв.см - го площадь.
Увеличим сторону на 20%
2 + 20% = 2 + 2•20/100 = 2,4 см - сторона увеличенного квадрата.
2,4 • 2,4 = 5,76 кв.см - площадь увеличенного квадрата.
Или просто прибавим 44% к площади исходного квадрата:
4 +44% = 4 + 4 • 44/100 =
= 4 + 1,76 = 5,76 кв.м
Получили одинаковые результаты.
0,0(0 оценок)
Ответ:
QbQbQb
QbQbQb
30.11.2022 14:44

Площадь увеличилась на 44%, а периметр увеличился на 20%.

Пошаговое объяснение:

1. Пусть сторона первоначального квадрата равна х см, тогда его площадь S1 = x^2 см^2, а периметр Р1 = 4х см.

2, После увеличения на 20% сторона квадрата станет равной х + 0,2х = 1,2х см. Площадь нового квадрата S2 = (1,2x)^2 = 1,44x^2 см^2, а периметр Р2 = 4•1,2х = 4,8х см.

3. S2/S1 = 1.44x^2/x^2 = 1,44 = 144% составляет площадь нового квадрата по отношению к площадь первоначального.

144% - 100% = 44% - на столько процентов увеличилась площадь.

4. Р2/Р1 = 4,8х/4х = 1,2 = 120% составляет периметр нового квадрата по отношению к периметру первоначального.

120% - 100% = 20% - на столько процентов увеличился периметр.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота