В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Школьник2525
Школьник2525
24.02.2020 23:41 •  Математика

337 ЕСЕП дайте ответь


337 ЕСЕП дайте ответь

Показать ответ
Ответ:
slunyavchik
slunyavchik
27.03.2023 00:41

Для того, чтобы найти координаты точки пересечения графиков функций y = 1.5x и 2y + 2x = 27, необходимо решить систему уравнений:

y = 1.5x;

2y + 2x = 27.

Решения данной системы уравнений и будет координатами точки пересечения графиков данных функций.

Решаем данную систему уравнений.

Подставляя во второе уравнение значение y = 1.5x из первого уравнения, получаем:

2 * 1.5x + 2x = 27;

3х + 2х = 27;

5х = 27;

х = 27 / 5;

х = 5.4.

Зная х, находим у:

y = 1.5x = 1.5 * 5.4 = 8.1.

ответ: координаты точки пересечения графиков данных функций (5.4; 8.1).

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
238064356
238064356
19.05.2022 10:25

Оценка:

Докажем, что оставшееся на доске число будет нечётным. Посмотрим, как изменяется сумма всех чисел от производимой операции. Пусть сумма чисел до операции равна S, а операция проводится над числами a и b и a ≥ b. Тогда S' = S - a + (a - b) - b = S - 2b. Так как операции нахождения разности проводились над целыми числами, результат будет целым, значит, 2b - чётное число. Изначально сумма всех чисел была равна 2015 * 1007 (нечётное число), значит, после каждой операции она будет оставаться нечётной, откуда последнее оставшееся число будет нечётным. Так как a ≥ b, и a и b - неотрицательные числа, то их разность тоже будет неотрицательна. Значит, число, оставшееся на доске, не будет больше самого большого из изначальных чисел. Тогда наибольшее число, которое могло остаться на доске, равно 2013.

Пример:

Рассмотрим числа k, k+1, k+2, k+3 и k+4. Сперва проведём операцию над числами k+3 и k+4 (получим 1), потом над 1 и k+2 (получим k+1), затем над k+1 и k+1 (получим 0), и, наконец, над k и 0 (получим k). Таким образом мы убираем 4 подряд стоящих числа. Уберём 2012 чисел от 2 до 2013 включительно. Теперь проведём операцию над числами 1 и 2014, получим 2013.

ответ: 2013.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота